关于暇点型反常积分的收敛性判别
@(微积分)
积分上下限确定的积分,在上下限范围内存在着暇点,此时应该怎么做比较容易分析出积分是否收敛是个很有意思的问题。
不加证明的总结一个有效的解决思路:假设在(a,b)上,f(a)趋向于无穷大。则积分 ∫baf(x)dx 是否收敛。
方法是:
判定limx→a+f(x)(x−a)δ是否存在,其中δ∈(0,1)
比如:
(10-3)m,n是正整数,反常积分:
∫10
@(微积分)
积分上下限确定的积分,在上下限范围内存在着暇点,此时应该怎么做比较容易分析出积分是否收敛是个很有意思的问题。
不加证明的总结一个有效的解决思路:假设在(a,b)上,f(a)趋向于无穷大。则积分 ∫baf(x)dx 是否收敛。
方法是:
比如:
(10-3)m,n是正整数,反常积分:
∫10