关于瑕点型反常积分的收敛性判别

针对瑕点型反常积分,当积分上下限内存在暇点时,分析积分的收敛性是一道挑战。一种有效策略是,若f(a)趋向于无穷大,通过特定方法判断积分∫baf(x)dx的收敛性。例如,对于反常积分∫10ln2(1−x)√mx√ndx,其收敛性与m,n无关,即使在边界处无界,通过极限分析也能确定积分的收敛性质。" 112926357,10542903,Excel多元线性回归分析:使用数据分析工具,"['Excel', '数据分析', '统计分析', '线性拟合']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于暇点型反常积分的收敛性判别

@(微积分)

积分上下限确定的积分,在上下限范围内存在着暇点,此时应该怎么做比较容易分析出积分是否收敛是个很有意思的问题。
不加证明的总结一个有效的解决思路:假设在(a,b)上,f(a)趋向于无穷大。则积分 baf(x)dx 是否收敛。

方法是:

limxa+f(x)(xa)δδ(0,1)

比如:

(10-3)m,n是正整数,反常积分:

10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值