Dual Thrust策略

介绍参考:

国内4种常用日内CTA策略介绍及实现:https://blog.csdn.net/u011331731/article/details/88326872

要点:

日High的最高价HH, N日Close的最低价LC
N日Close的最高价HC,N日Low的最低价LL
Range = Max(HH-LC,HC-LL)
BuyLine = Open + K1*Range
SellLine = Open - K2*Range

当价格向上突破上轨时,如果当时持有空仓,则先平仓,再开多仓;如果没有仓位,则直接开多仓;
当价格向下突破下轨时,如果当时持有多仓,则先平仓,再开空仓;如果没有仓位,则直接开空仓;

当K1时,多头相对容易被触发,当K1>K2时,空头相对容易被触发。因此,投资者在使用该策略时,一方面可以参考历史数据测试的最优参数,另一方面,则可以根据自己对后势的判断,或从其他大周期的技术指标入手,阶段性地动态调整K1和K2的值。

代码:

import talib
from rqalpha.api import *
import numpy
import pandas as pd
from pandas import Series
from rqalpha import run_func
from rqalpha.api import industry, update_universe, order_target_value
from rqalpha.utils import scheduler
import numpy as np
import pandas as pd
import logging
import warnings
from math import ceil

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from rqalpha.api import *
import scipy.optimize as sco
import seaborn as sns
import talib
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import TimeSeriesSplit
from sklearn.preprocessing import StandardScaler


# 在这个方法中编写任何的初始化逻辑。context对象将会在你的算法策略的任何方法之间做传递。
def init(context):
    context.future_id = "IH88"
    context.max_length = 10
    subscribe(context.future_id)
    context.fired = False
    context.k1 = 0.5
    context.k2 = 0.5
    context.qty = 5


# before_day_trading此函数会在每天日盘交易开始前被调用,当天只会被调用一次
def before_day_trading(context):
    pass


# 你选择的期货数据更新将会触发此段逻辑,例如日线或分钟线更新
def handle_bar(context, bar_dict):
    if context.now.strftime('%H:%M') < '14:59':
        hist_close = history_bars(context.future_id, context.max_length, '1d', 'close')
        hist_high = history_bars(context.future_id, context.max_length, '1d', 'high')
        hist_low = history_bars(context.future_id, context.max_length, '1d', 'low')
        price_open = history_bars(context.future_id, 1, '1d', 'open')[0]

        range = max(max(hist_high) - min(hist_close), max(hist_close) - min(hist_low))
        up = price_open + context.k1 * range
        down = price_open - context.k2 * range
        price_now = bar_dict[context.future_id].close

        if price_now > up:
            sell_qty = context.portfolio.positions[context.future_id].sell_quantity
            if sell_qty > 0:
                buy_close(context.future_id, sell_qty)
            buy_open(context.future_id, context.qty)

        if price_now < down:
            buy_qty = context.portfolio.positions[context.future_id].buy_quantity
            if buy_qty > 0:
                sell_close(context.future_id, buy_qty)
            sell_open(context.future_id, context.qty)
    else:
        buy_qty = context.portfolio.positions[context.future_id].buy_quantity
        sell_qty = context.portfolio.positions[context.future_id].sell_quantity
        if buy_qty > 0:
            sell_close(context.future_id, buy_qty)
        if sell_qty > 0:
            buy_close(context.future_id, sell_qty)


# before_night_trading此函数会在每天夜盘交易开始前被调用,当天只会被调用一次
def before_night_trading(context):
    pass

这是个裸策略,未做任何优化,结果也不佳,也在意料之中的. 

经典策略还是得依靠调优等方式改造后才能使用,要是拿来就用那历史上就出来无数的大富翁了.

 

参考:

https://www.ricequant.com/community/topic/2473

https://www.ricequant.com/community/topic/1726

https://www.ricequant.com/community/topic/4920

https://www.ricequant.com/community/topic/2411

https://www.ricequant.com/community/topic/4971

https://www.ricequant.com/community/topic/4830

https://www.ricequant.com/community/topic/36847

https://uqer.io/v3/community/share/586f319989e3ba0047efdc09

https://uqer.io/v3/community/share/587b860323a7d6004ba35de5

https://uqer.io/v3/community/share/57cff947228e5b049cfb8572

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值