光流 | 基于深度学习的光流估计算法汇总,原理,公式,流程图,代码

基于深度学习的光流算法

  • 一、光流估计的基本原理
  • 二、基于深度学习的光流估计算法
    • 1. **FlowNet系列**
    • 2. **FlowNet 2.0**
    • 3. **PWC-Net**
    • 4. **RAFT(Recurrent All-Pairs Field Transformers)**
    • 5. **LiteFlowNet系列**
  • 三、算法流程图示例
    • FlowNet2.0架构
    • PWC-Net金字塔处理流程
  • 四、代码实现框架
    • 1. **传统方法(Lucas-Kanade)示例**
    • 2. **深度学习框架(以RAFT为例)**
  • 五、性能对比与适用场景
  • 六、未来研究方向
  • 七、开源资源

以下是基于深度学习的光流估计算法的汇总,涵盖原理、核心公式、算法流程图及代码实现框架。内容综合了多篇研究成果,并标注了相关引用来源。


一、光流估计的基本原理

光流(Optical Flow)描述了图像中像素点随时间变化的运动模式,其核心假设包括:

  1. 亮度恒定:同一像素在相邻帧中的亮度不变。
  2. 小运动:位移量足够小,可用泰勒展开近似。
  3. 空间一致性:邻域内像素运动相似。

光流基本方程(基于亮度恒定假设):
I x u + I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值