天体测距之三角测量

一、引言

视差法测距是天文学中用来测量近距离天体(如太阳系内的行星和恒星)距离的一种有效手段。这一方法基于三角测量原理,利用地球在公转轨道上不同位置观察天体的视觉差异来计算距离。在实际测量过程中,天文学家通常会在地球公转轨道上选取相隔半年的两个位置,对同一天体进行观测。这实质上等同于在同一天文台,分别在半年前后对天体进行两次观测。通过这种方式,可以精确地捕捉到天体的视差变化,从而计算出其与地球之间的距离(如下图所示)。

请添加图片描述

二、三角测距原理

三角测量的原理跟双目视觉测量深度的原理类似,如下图所示:
在这里插入图片描述
O l O_l Ol O r O_r Or:相机的光心, T T T是它们的距离(在天体测距任务中, T ≈ 2 A U T\approx 2AU T2AU
f f f :相机的焦距, P P P一个目标顶点(可视为观测的天体)
x l x^l xl x r x^r xr : 点 P P P在左右相机的投影位置
x l x_l xl x r x_r xr :像平面左边缘到 P P P 投影位置的距离
Z Z Z :是天体到 O l O r O_lO_r OlOr的距离。我们要测的天体距离实际是 P O l PO_l POl P O r PO_r POr

接下来,我们简单推导。 首先, △ P x l x r ∼ △ P O l O r \triangle Px^lx^r \sim \triangle PO_lO_r PxlxrPOlOr, 因此有:
x l x r T = Z − f Z \frac{x^{l} x^{r}}{T} =\frac{Z-f}{Z} Txlxr=ZZf
进一步可改写为:
T − ( x l − x r ) T = Z − f Z \frac{T-\left(x_{l}-x_{r}\right)}{T}=\frac{Z-f}{Z} TT(xlxr)=ZZf
这里的 d = x l − x r d=x_{l}-x_{r} d=xlxr 被称为视差,最后
Z = f ⋅ T x l − x r Z=\frac{f \cdot T}{x_{l}-x_{r}} Z=xlxrfT

那么,地球到天体的距离 P O l PO_l POl 可以通过下式得到:
∣ P O l ∣ = Z 2 + T 2 / 4 |PO_l| = \sqrt {Z^2+ T^2/4} POl=Z2+T2/4

三、秒差距

在天体测距中,秒差距(英文Parsec,缩写pc)是天文学上的一种常用的长度单位。以地球公转轨道的平均半径(一个天文单位,AU)为底边所对应的三角形内角称为视差。当这个角的大小为1秒时(也就是上图中 ∠ O l P O r = 2 ′ ′ \angle O_lPO_r = 2'' OlPOr=2′′),这个三角形(由于1秒的角的所对应的两条边的长度差异完全可以忽略,因此,这个三角形可以想象成锐角三角形,也可以想象成等腰三角形)的一条边的长度(地球到这个恒星的距离)就称为1秒差距。

1 pc = 1 AU tan ⁡ 1 ′ ′ ≈ 1 AU 1 ′ ′ = 206 , 265 AU ≈ 3.26 光年 1\text{pc} = \frac{1 \text{AU}}{\tan 1''} \approx \frac{1 \text{AU}}{ 1''} = 206,265 \text{AU} \approx 3.26 \text{光年} 1pc=tan1′′1AU1′′1AU=206,265AU3.26光年

注意,这里看上去像是天体到太阳的距离,而非到地球的距离。实际上,因为天体距离较远的话,视差角很小,二者近似相等。

时差法适用于测量较近的天体,如太阳系内的行星、小行星、彗星以及一些最近的恒星。对于更远的天体,视差角太小,无法用地面上的仪器直接测量,因此需要使用其他方法来估计距离。

四、参考资料

知乎:双目相机模型–三角测量Triangulation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Researcher-Du

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值