一、引言
视差法测距是天文学中用来测量近距离天体(如太阳系内的行星和恒星)距离的一种有效手段。这一方法基于三角测量原理,利用地球在公转轨道上不同位置观察天体的视觉差异来计算距离。在实际测量过程中,天文学家通常会在地球公转轨道上选取相隔半年的两个位置,对同一天体进行观测。这实质上等同于在同一天文台,分别在半年前后对天体进行两次观测。通过这种方式,可以精确地捕捉到天体的视差变化,从而计算出其与地球之间的距离(如下图所示)。
二、三角测距原理
三角测量的原理跟双目视觉测量深度的原理类似,如下图所示:
O
l
O_l
Ol 和
O
r
O_r
Or:相机的光心,
T
T
T是它们的距离(在天体测距任务中,
T
≈
2
A
U
T\approx 2AU
T≈2AU )
f
f
f :相机的焦距,
P
P
P一个目标顶点(可视为观测的天体)
x
l
x^l
xl 和
x
r
x^r
xr : 点
P
P
P在左右相机的投影位置
x
l
x_l
xl 和
x
r
x_r
xr :像平面左边缘到
P
P
P 投影位置的距离
Z
Z
Z :是天体到
O
l
O
r
O_lO_r
OlOr的距离。我们要测的天体距离实际是
P
O
l
PO_l
POl 或
P
O
r
PO_r
POr 。
接下来,我们简单推导。 首先,
△
P
x
l
x
r
∼
△
P
O
l
O
r
\triangle Px^lx^r \sim \triangle PO_lO_r
△Pxlxr∼△POlOr, 因此有:
x
l
x
r
T
=
Z
−
f
Z
\frac{x^{l} x^{r}}{T} =\frac{Z-f}{Z}
Txlxr=ZZ−f
进一步可改写为:
T
−
(
x
l
−
x
r
)
T
=
Z
−
f
Z
\frac{T-\left(x_{l}-x_{r}\right)}{T}=\frac{Z-f}{Z}
TT−(xl−xr)=ZZ−f
这里的
d
=
x
l
−
x
r
d=x_{l}-x_{r}
d=xl−xr 被称为视差,最后
Z
=
f
⋅
T
x
l
−
x
r
Z=\frac{f \cdot T}{x_{l}-x_{r}}
Z=xl−xrf⋅T
那么,地球到天体的距离
P
O
l
PO_l
POl 可以通过下式得到:
∣
P
O
l
∣
=
Z
2
+
T
2
/
4
|PO_l| = \sqrt {Z^2+ T^2/4}
∣POl∣=Z2+T2/4
三、秒差距
在天体测距中,秒差距(英文Parsec,缩写pc)是天文学上的一种常用的长度单位。以地球公转轨道的平均半径(一个天文单位,AU)为底边所对应的三角形内角称为视差。当这个角的大小为1秒时(也就是上图中 ∠ O l P O r = 2 ′ ′ \angle O_lPO_r = 2'' ∠OlPOr=2′′),这个三角形(由于1秒的角的所对应的两条边的长度差异完全可以忽略,因此,这个三角形可以想象成锐角三角形,也可以想象成等腰三角形)的一条边的长度(地球到这个恒星的距离)就称为1秒差距。
1 pc = 1 AU tan 1 ′ ′ ≈ 1 AU 1 ′ ′ = 206 , 265 AU ≈ 3.26 光年 1\text{pc} = \frac{1 \text{AU}}{\tan 1''} \approx \frac{1 \text{AU}}{ 1''} = 206,265 \text{AU} \approx 3.26 \text{光年} 1pc=tan1′′1AU≈1′′1AU=206,265AU≈3.26光年
注意,这里看上去像是天体到太阳的距离,而非到地球的距离。实际上,因为天体距离较远的话,视差角很小,二者近似相等。
时差法适用于测量较近的天体,如太阳系内的行星、小行星、彗星以及一些最近的恒星。对于更远的天体,视差角太小,无法用地面上的仪器直接测量,因此需要使用其他方法来估计距离。