最小相位系统

1. 从系统函数零极点看系统频响

系统函数用于表征系统的输入输出关系,系统函数和冲激响应互为傅里叶变换对。令系统函数取得 ∞ \infty 的点称为系统函数的极点,令系统函数取值为0的点称为系统函数的零点。系统函数的零/极点情况不仅可以反应系统的冲激响应形态(常用于判断系统是否稳定),也可以反应系统的频响特性。本小节仅对系统函数零极点和系统频响之间的关系进行说明。
通常地,系统函数可表示为如下有理分子式的形式
H ( s ) = K ∏ n ( s − z n ) ∏ m ( s − p m ) (1) H(s)=K\frac{\prod_n (s-z_n)}{\prod_m(s-p_m)} \tag{1} H(s)=Km(spm)n(szn)(1)
在上式中, s = σ + j ω s=\sigma+j\omega s=σ+表示复频率, z n z_n zn p m p_m pm分别表示系统的零点和极点, K K K为固定增益。令(1)中 s = j ω s=j\omega s=,则可得到系统频响表达式为
H ( j ω ) = K ∏ n ( j ω − z n ) ∏ m ( j ω − p m ) (2) H(j\omega)=K\frac{\prod_n (j\omega-z_n)}{\prod_m(j\omega-p_m)} \tag{2} H()=Km(pm)n(zn)(2)
我们在复平面中考察上面的表达式, j ω − z n j\omega-z_n zn在复平面中表示零点 z n z_n zn指向点 ( 0 , j ω ) (0,j\omega) (0,)的向量。同理, j ω − p m j\omega-p_m pm在复平面中表示极点 p m p_m pm指向点 ( 0 , j ω ) (0,j\omega) (0,)的向量。将向量表示为幅度和相位相乘的形式,得到
j ω − z n → = N n e j ψ n j ω − p m → = M m e j θ m \overrightarrow{j\omega-z_n}=N_n e^{j\psi_n}\\ \overrightarrow{j\omega-p_m}=M_m e^{j\theta_m}\\ zn =Nnejψnpm =Mmejθm
将上面的式子代入(2)式中,得到
H ( j ω ) = K ∏ n N n e j ψ n ∏ m M m e j θ m = K ∏ n N n ∏ m M m e j ( ∑ n ψ n − ∑ m θ m ) (3) H(j\omega)=K\frac{\prod_n N_n e^{j\psi_n}}{\prod_m M_m e^{j\theta_m}}=K\frac{\prod_n N_n}{\prod_m M_m} e^{j(\sum_n \psi_n -\sum_m \theta_m)} \tag{3} H()=KmMmejθmnNnejψn=KmMmnNnej(nψnmθm)(3)
从上式中,得到如下结论(忽略固定增益系数 K K K的影响):
(1) 频响的幅频特性为所有零点到 ( 0 , j ω ) (0,j\omega) (0,)点距离的乘积和所有极点到 ( 0 , j ω ) (0, j\omega) (0,)点距离的乘积之比,即
∣ H ( j ω ) ∣ = K ∏ n N n ∏ m M m (4) |H(j\omega)|=K\frac{\prod_n N_n}{\prod_m M_m} \tag{4} H()=KmMmnNn(4)
(2) 频响的相频特性为所有零点到 ( 0 , j ω ) (0,j\omega) (0,)点向量夹角之和和所有极点到 ( 0 , j ω ) (0, j\omega) (0,)点向量夹角之和的差,即
a r g ( H ( j ω ) ) = ( ∑ n ψ n − ∑ m θ m ) (5) arg(H(j\omega))=(\sum_n \psi_n -\sum_m \theta_m) \tag{5} arg(H())=(nψnmθm)(5)

举例说明上述结论的应用:
一阶RC高通滤波器的系统函数为 H ( s ) = s s + 1 R C H(s)=\frac{s}{s+\frac{1}{RC}} H(s)=s+RC1s,它有一个零点 z 1 = 0 z_1=0 z1=0,有一个极点 p 1 = − 1 R C p_1=-\frac{1}{RC} p1=RC1,下面画出其零极点分布图
在这里插入图片描述

图1. 一阶RC高通滤波器电路图

如零极点分布图所示,当 ω = 0 \omega=0 ω=0时, N 1 = 0 N_1=0 N1=0 M 1 = 1 R C M_1=\frac{1}{RC} M1=RC1,此时 ∣ H ( j ω ) ∣ = N 1 M 1 = 0 |H(j\omega)|=\frac{N_1}{M_1}=0 H()=M1N1=0;又因为 θ 1 = 0 \theta_1=0 θ1=0 ψ 1 = 90 ° \psi_1=90° ψ1=90°,此时 a r g ( H ( j 0 ) ) = 90 ° arg(H(j0))=90° arg(H(j0))=90°。当 ω = 1 R C \omega=\frac{1}{RC} ω=RC1时, N 1 = 1 R C N_1=\frac{1}{RC} N1=RC1 θ 1 = 45 ° \theta_1=45° θ1=45°,此时 a r g ( H ( j 1 R C ) ) = 45 ° arg(H(j\frac{1}{RC}))=45° arg(H(jRC1))=45°,且 M 1 = 2 R C M_1=\frac{\sqrt{2}}{RC} M1=RC2 ,所以 N 1 N 2 = 1 2 \frac{N_1}{N_2}=\frac{1}{\sqrt{2}} N2N1=2 1,此点即为高通滤波器的截止频率点。最后,当 ω \omega ω趋于 ∞ \infty 时, N 1 M 1 \frac{N_1}{M_1} M1N1趋于1, θ 1 → 90 ° \theta_1 \rightarrow 90° θ190° a r g ( H ( j ∞ ) ) → 0 ° arg(H(j\infty)) \rightarrow 0° arg(H(j)),根据上面的分析,得到其幅频特性和相频特性曲线如下图所示
在这里插入图片描述

图2. 一阶RC高通滤波器的时频和相频特性曲线

需要特别注意的是,很多人会根据零极点的字面意思,想当然地认为零极点对应的频点上系统的频响会取到谷值或峰值。实际上,零极点是在S域的说法,零极点都可能是复数,当零极点不是纯虚数(即零极点不落在虚轴上)时,零极点和频响的峰值或谷值并没有明确的对应关系。只有当零极点是纯虚数(即零极点落在虚轴上)时,在零极点频率上的频点才会是峰值或谷值。

2. 全通系统和最小相位系统

一个线性系统的响应通常包含两个部分,一个是系统的幅频响应特性,用于表示系统输入输出信号之间的幅度关系。另一个是系统的相频响应特性,用于表示系统输入输出信号之间的相位关系。最小相位系统,顾名思义,关注的是系统的相位特性,且“最”字就意味着有比较,比较需要控制变量,所有被比较的系统的幅频特性需保持一致。有最小相位系统相应地就会有非最小相位系统,很自然地,我们容易想到非最小相位系统可以通过给最小相位系统加相位偏移来实现,而加相位偏移可以通过一个移相网络来实现。对移相网络的要求是仅改变系统的相频特性而不改变系统幅频特性,满足该性质的移相网络成为全通系统。基于上述分析,可得任何一个非最小相位系统均可表示为一个全通系统和一个最小相位系统的级联。为此,下面分别对这两种系统进行说明。

2.1全通系统

从上面的说明可知,全通系统是一个幅频特性曲线恒为1,相频特性曲线不定的系统。从第1小节中零极点与系统频响关系的分析中,我们知道,为了使幅频特性曲线恒为1,需令 N i = M i N_i=M_i Ni=Mi。此时,零极点有两种情况:1)零极点重合,此时由表达式(1)可知,系统函数为常数,没有研究的意义;2)零极点关于虚轴对称。所以,任何零极点关于虚轴对称的系统都为全通系统,不同零极点分布仅影响系统的相频特性,基于该性质,全通系统常用于对已知系统的相位进行调整。
在这里插入图片描述

图3. 全通系统零极点分布示意图
2.2 最小相位系统

最小相位系统的特征在前面已经说过,它是在所有相同幅频特性的所有系统中,输入输出信号相位差最小的系统。下面我们来一步一步探究最小相位系统的零极点分布情况,换言之,怎么判断一个系统是不是最小相位系统?
(1)我们讨论的所有系统都应该是稳定的,所以系统的极点都分布在左半平面;
(2)当系统的幅频特性和极点确定之后,其零点分布情况有两种,如下图所示,这两种零点分布相对于虚轴对称。当零点位于左半平面时,零点与虚轴上的点形成的向量的夹角为锐角;当零点位于右半平面时,零点与虚轴上的点形成的向量的夹角为钝角。根据(5)式可知,当零点位于左半平面时,相角比右半平面小。
综上所属,当一个系统为最小相位系统时,其传递函数的所有零点都应该位于S平面的左半平面。显然,若将一个最小相位系统的传递函数和一个全通系统的传递函数相乘,乘积中将出现右半平面上的零点(全通系统的零点与极点关于虚轴对称,而极点只有在左半平面系统才稳定,所以稳定全通网络的零点只能位于右半平面),所以两者级联后的系统为非最小相位系统。
最小相位系统因为相位变化小,而相位变化对应系统延迟,所以最小相位系统的延迟最小,系统反应最灵敏,系统响应时间最短。
在这里插入图片描述

图4. 相同幅频特性的两种零极点分布形式示意图

其实在探究最小相位系统的零点分布的过程中,没有完全弄透为什么零点在左半平面相位就最小,角度有循环折叠特性,目前还没想出什么更好的理解,后面补上!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值