最小相位系统

1. 从系统函数零极点看系统频响

系统函数用于表征系统的输入输出关系,系统函数和冲激响应互为傅里叶变换对。令系统函数取得 ∞ \infty 的点称为系统函数的极点,令系统函数取值为0的点称为系统函数的零点。系统函数的零/极点情况不仅可以反应系统的冲激响应形态(常用于判断系统是否稳定),也可以反应系统的频响特性。本小节仅对系统函数零极点和系统频响之间的关系进行说明。
通常地,系统函数可表示为如下有理分子式的形式
H ( s ) = K ∏ n ( s − z n ) ∏ m ( s − p m ) (1) H(s)=K\frac{\prod_n (s-z_n)}{\prod_m(s-p_m)} \tag{1} H(s)=Km(spm)n(szn)(1)
在上式中, s = σ + j ω s=\sigma+j\omega s=σ+表示复频率, z n z_n zn p m p_m pm分别表示系统的零点和极点, K K K为固定增益。令(1)中 s = j ω s=j\omega s=,则可得到系统频响表达式为
H ( j ω ) = K ∏ n ( j ω − z n ) ∏ m ( j ω − p m ) (2) H(j\omega)=K\frac{\prod_n (j\omega-z_n)}{\prod_m(j\omega-p_m)} \tag{2} H()=Km(pm)n(zn)(2)
我们在复平面中考察上面的表达式, j ω − z n j\omega-z_n zn在复平面中表示零点 z n z_n zn指向点 ( 0 , j ω ) (0,j\omega) (0,)的向量。同理, j ω − p m j\omega-p_m pm在复平面中表示极点 p m p_m p

### 最小相位系统的分解方法与原理 最小相位系统是一种重要的概念,在控制系统和信号处理领域具有广泛的应用。其分解方法主要涉及将一个传递函数分为最小相位部分和非最小相位部分。以下是关于这一主题的具体说明: #### 1. 最小相位系统的定义 最小相位系统是指所有零点和极点都位于复平面左半部的线性时不变系统[^3]。这类系统的特征在于它们的时间延迟是最小的,因此被称为“最小相位”。 #### 2. 分解原则 任何因果稳定的传递函数都可以唯一地表示为一个最小相位传递函数和全通传递函数的乘积。这种分解的核心思想是利用系统的零点分布特点将其划分为两部分: - **最小相位部分**:包含所有的稳定零点。 - **全通部分**:用于补偿不稳定零点的影响。 具体而言,假设给定一个传递函数 \( G(s) \),可以写成如下形式: \[ G(s) = G_{\text{min}}(s) \cdot A(s), \] 其中 \( G_{\text{min}}(s) \) 是最小相位部分,\( A(s) \) 是全通部分。 #### 3. 数学表达 如果系统的开环传递函数为: \[ G(s) = K \frac{(s+z_1)(s+z_2)\cdots}{(s+p_1)(s+p_2)\cdots}, \] 那么可以通过以下方式对其进行分解: - 将所有位于右半平面的零点映射到左半平面,形成新的最小相位零点集合; - 对应的右半平面零点被移至无穷远处,并由全通网络来模拟这些零点的效果。 此过程可通过代数运算完成,最终得到两个独立的部分——最小相位子系统和全通子系统。 #### 4. 应用场景 在实际应用中,这种分解有助于简化控制器设计以及性能分析。例如,在现代控制理论里,通过对原系统进行这样的拆分可以使后续操作更加直观易懂;而在数字信号处理方面,则可能涉及到滤波器优化等问题[^4]。 ```python import numpy as np from scipy import signal # 定义原始传递函数 (存在非最小相位零点) num = [1, -2] # 表示 s - 2 的系数向量 den = [1, 3, 2] # 表示 s^2 + 3s + 2 的系数向量 sys_original = signal.TransferFunction(num, den) # 使用 MATLAB 或 Python 中的相关工具包执行最小相位提取 # 这一步通常需要借助专门算法实现自动化的零极点配对与转换 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值