矩阵的“特征值分解”和“奇异值分解”区别


       特征值分解处理相关矩阵,奇异值分解处理数据矩阵,两者结果相同,特征值分解可以采用K-L变换,奇异值分解可以借助于svd 。svd可以用于求矩阵的伪逆,也可以用来实现降维,K-L变换可以用在信号编码和数据压缩领域


关于奇异值分解的有用链接:


特征值分解(Eigen <wbr>Value <wbr>Decomposition)和奇异值分解(Singular <wbr>Value <wbr>Decomposition);KL变换和SVD变换
        在信号处理中经常碰到观测值的自相关矩阵,从物理意义上说,如果该观测值是由几个(如 K个)相互统计独立的源信号线性混合而成,则该相关矩阵的 或称 维数 就为K,由这 K 个统计独立信号构成 K 维的线性空间,可由自相关矩阵最大 K 个特征值所对应的特征向量或观测值矩阵最大 K个奇异值所对应的左奇异向量展成的子空间表示,通常称 信号子空间 ,它的补空间称 噪声子空间 ,两类子空间相互正交。理论上,由于噪声的存在,自相关矩阵是正定的,但实际应用时,由于样本数量有限,可能发生奇异,矩阵条件数无穷大,造成数值不稳定,并且 自相关矩阵特征值 是观测值矩阵 奇异值 平方 ,数值动态范围大,因而 子空间分析 时常采用观测值矩阵 奇异值分解 ,当然奇异值分解也可对奇异的自相关矩阵进行。在自相关矩阵正定时, 特征值分解 奇异值分解 特例 ,且实现时相对简单些,实际中,常采用对角加载法保证自相关矩阵正定,对各特征子空间没有影响。在信号处理领域,两者都用于信号的特征分析,但两者的 主要区别 在于:奇异植分解主要用于 数据矩阵 ,而特征植分解主要用于 方型的相关矩阵。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值