摘要
注意缺陷多动障碍(ADHD)是一种常见的精神疾病,严重影响学龄儿童的学习和日常生活。ADHD的早期识别非常关键,需要可靠且客观的诊断工具来进行诊断。然而,目前对行为症状的临床评估可能存在不一致和主观性的问题。功能磁共振成像(fMRI)是一种无创技术,已被证明能够有效地检测ADHD患者的大脑异常。近年来,基于静息态fMRI(rsfMRI)的脑功能网络在诊断包括ADHD在内的各种脑疾病方面取得了良好的效果。一些综述文章探讨了使用fMRI数据和机器学习或深度学习方法检测其他疾病的情况。然而,目前还没有专门针对ADHD的综述论文。因此,本研究旨在通过对使用rsfMRI数据和机器学习方法检测ADHD的文献进行综述。本研究提供了有关fMRI数据库的大致信息,并介绍了ADHD-200数据库的相关知识。强调了在分类阶段之前检查过程的所有阶段的重要性,包括网络和图谱选择、特征提取和特征选择,以期为该领域的研究人员提供一个有用的起点。
引言
注意缺陷多动障碍(ADHD)是一种常见的精神疾病,影响约5%~10%的学龄儿童。其特征是冲动、多动和注意力不集等行为,这些行为可持续至成年期,并给个人、家庭和社会带来重大问题。例如,与同龄人相比,患有ADHD的儿童经常在学习和生活方面遇到困难。因此,迫切需要准确、客观的诊断工具来早期识别ADHD。目前,ADHD的诊断主要依靠对行为症状的临床评估,这往往具有主观性和不一致性,这使得开发一种非侵入性和客观的生物标志物至关重要。
功能磁共振成像(fMRI)是一种成熟的非侵入性神经影像学方法,可有效检测ADHD患者的大脑异常。该技术通过测量氧合和脱氧血红蛋白的不同磁性来实现。特别是,静息态fMRI(rsfMRI)是一种常用的成像方法,擅长分析大脑的功能活动。近年来,一些研究报告了使用基于rsfMRI的脑功能网络在诊断大脑疾病面的良好结果,包括ADHD、精神分裂症、自闭症和阿尔茨海默病。
机器学习可以在没有先验知识的情况下识别数据中变量之间的复杂关系。这使得它成为生物医学领域中备受追捧的方法。因此,近年来发表在PubMed上与机器学习相关的出版物数量大幅增加,如图1所示。
图1.按年份统计的机器学习出版物数量。
机器学习可以从大数据中生成预测模型,这是其优势之一。人工神经网络(ANN)是最常用的机器学习模型之一,这种网络的灵感来源于人类大脑中的生物神经网络。感知器是神经网络的基本单元,它将输入数据划分为不同的类别。感知器是深度神经网络(DNN)的重要组成部分,包括多层感知器分类器。其他常用的机器学习方法包括线性回归、逻辑回归、支持向量机(SVM)和朴素贝叶斯分类器,如图2所示。
图2.机器学习方法的分类。
许多综述研究探讨了脑部疾病的检测,包括自闭症、阿尔茨海默病、帕金森病、轻度