阿尔茨海默病和额颞叶痴呆症中的脑网络功能连接

摘要

神经退行性疾病会影响特定的大规模神经网络,从而导致明显的行为和认知功能障碍。在这里,本文回顾了利用网络敏感的静息态功能磁共振成像(rsfMRI)方面的最新进展,以揭示神经退行性疾病,特别是阿尔茨海默病(AD)和额颞叶痴呆(FTD)中认知障碍背后的脑网络退化。总的来说,基于rsfMRI的功能连接为AD和FTD的病理生理学提供了新的重要见解。随着神经影像学的进步、更好的临床表型分类以及跨多个位点的大规模样本共享,使得基于rsfMRI的功能连接分析发展成在神经退行性疾病连续体中具有科学和临床实用性的检测方法。

前言

神经退行性疾病的特征是大脑网络功能的逐渐丧失,从而导致特定的行为和认知功能障碍。阿尔茨海默病(AD)和额颞叶痴呆(FTD)是65岁以下患者中最常见的两种神经退行性疾病,而在65岁以上患者中,阿尔茨海默病更为常见。基于神经病理学研究和转基因动物模型,基于网络的神经退行性假说在二十多年前被提出,该假说认为每种神经退行性疾病会影响特定的大规模神经网络。随着针对神经退行性疾病的有效、疾病特异性和个性化治疗的出现,迫切需要一种客观、无创、基于生物学的网络敏感神经影像检测方法,以预测患病风险、早期诊断并监测神经退行性疾病的进程和治疗效果。与传统的基于区域的fMRI方法不同,基于rsfMRI的功能连接方法能够在活体中描绘大规模的脑网络,并且能够检测到疾病中特定的网络功能障碍。迄今为止,rsfMRI已被广泛用于描绘正常人类的功能连接结构,并预测个体在行为和认知方面的差异。在这里,本文将重点讨论rsfMRI如何揭示神经退行性疾病及其早期阶段的神经网络变化,特别是阿尔茨海默病和额颞叶痴呆,以及临床前和前驱期人群的功能连接改变。

利用静息态功能磁共振成像绘制大脑网络

在rsfMRI记录期间,受试者被指示保持静止和清醒(通常眼睛盯着一个十字),而不接收任何特定的刺激。由于只需要保持清醒,因此可以很容易地从患病人群(包括AD患者)中获取rsfMRI。在没有外部刺激引起变化(如任务态fMRI)的情况下,rsfMRI捕捉到自发的宏观血流动力学变化,这些变化表现为低频(<0.1Hz)的血氧水平依赖(BOLD)波动。在执行特定认知功能时,通常共激活或去激活的区域在其BOLD波动中表现出高时间相关性,这一现象最早在双侧运动皮层之间观察到。这表明,时间上的同步性反映了大脑区域之间的内在功能连接。当在麻醉猴子中观察到视觉皮层的功能连接模式与其多突触解剖通路的拓扑结构一致时,基于rsfMRI的功能连接相关性得到了进一步验证。通过rsfMRI功能连接(FC)所重现的多区域内在连接网络(ICNs)在不同物种间存在同源性,并且会受到心理生理状态的系统性影响,这表明这些网络在认知中具有重要作用。重要的是,认知表现和行为障碍与这些大脑网络之间的相互作用受损有关,这可能解释了许多神经退行性疾病的症状表现和病理机制。

rsfMRI FC通常被定义为空间分布的脑区之间BOLD时间序列的皮尔逊相关性,但也存在许多其他的时间同步指标。有多种常见的方法可以用来推导rsfMRI FC(见图1)。在这里,本文总结了该领域目前的四种主要方法。

图1.基于rsfMRI的功能连接推导与分析方法。

基于种子点的分析(图1a)通过将种子区域的BOLD信号与大脑中所有其他体素的信号进行相关性分析,以提取内在连接网络(ICNs)。因此,连接模式的代表性和实用性取决于所使用的种子点。结果ICN图中的每个体素都代表与种子区域的连接。Seeley及其同事(2009)使用五种不同的神经退行性综合征(包括AD和FTD变体)的五个特征种子,在健康的rsfMRI数据中进行了基于种子的FC映射,发现这些综合征特异性退化模式与健康ICNs之间存在密切对应关系,从而支持了基于网络的神经退行性假说(图2)。

图2.不同的神经退行性疾病可能表现出相似的脑萎缩模式,这些模式与健康大脑中的功能连接网络相关联。

其他方法同时考虑多个脑区。在独立成分分析(ICA)中(如图1b所示),来自所有脑体素的自发BOLD信号被分解为空间上不重叠且时间上相干的网络。生成的ICN图谱表示与特定网络的连接。例如,Qian及其同事(2015)利用ICA提取了默认模式网络、背侧注意网络和腹侧注意网络,并展示了这些网络在阿尔茨海默病和健忘性轻度认知障碍患者中的不同变化。虽然基于种子的方法和ICA方法主要用于提取网络内的连接(通常是在体素水平),但它们也对网络间的连接(例如,DMN种子与非DMN体素之间的连接以及使用ICA的网络间连接)非常敏感。

通过分析基于分区的连接矩阵,可以将基于种子的功能连接(从一个区域到多个区域的连接)扩展到全脑(多个区域之间的连接)(图1c)。基于一组覆盖全脑的预定义感兴趣区域(ROI),使用脑分割技术计算所有ROI对之间的功能连接,并将这些连接整理成一个邻接矩阵。来自ICA的不同独立成分(即空间映射)之间的同步性也可以用类似的方式处理。通过选择合适的空间分辨率,研究者能够有效地呈现和分析不同脑区或网络之间以及内部的复杂连接模式。

一旦获得功能连接的测量值,就可以进行单变量或多变量统计分析,以识别组间或条件间的差异。对于高维矩阵,图论方法(图1d)非常有助于捕捉和可视化复杂的大脑交互及其网络拓扑结构。脑图由节点(ROI)和边(功能连接)构成。节点可以根据连边强度进行聚类,从而形成网络或社区,这些网络或社区的特点是内部连接较强,而不同网络之间的连接较弱。为了捕捉拓扑特性,可以在节点、网络和全脑水平计算图论指标。这些指标已被证明对揭示疾病机制非常有用。

除了这些静态功能连接方法,最近在动态、时变功能连接方面的进展提供了更精细的功能网络组织变化的时空特征(图1e)。例如,可以将基于种子点、ICA或分区的方法与滑动窗口方法相结合,然后使用聚类算法来识别具有代表性的“动态连接状态”,随后对这些状态进行图论分析,以对比它们的拓扑差异。此外,还可以进一步评估在某一状态下花费的时间和状态之间的转移概率等参数对疾病的敏感性。将这些方法与细致的数据预处理和参数设置相结合,rsfMRI提供了一种对网络变化敏感、可重复且无创的工具来研究人类在健康和疾病状态下的功能连接组。

痴呆亚型表现出不同的功能连接网络变化

先前的研究通过展示五种不同神经退行性综合征中的空间萎缩模式与基于rsfMRI得到的正常人群内在连接网络(ICNs)相似,证实了基于网络的神经退行性假说(图2)。下一个问题是,不同的痴呆亚型是否在这些大规模脑网络中表现出特定于综合征的功能连接变化。在以下各部分中,本文提供了AD与FTD及其变体之间的神经影像学证据。

阿尔茨海默病(AD)和行为变异型额颞叶痴呆(bvFTD)表现出不同的网络变化:AD会导致后部海马-扣带回-颞顶网络的萎缩,该网络类似于默认模式网络(DMN)。Greicius及其同事的开创性研究发现,与年龄匹配的健康对照组相比,AD患者的DMN功能连接减少,这一发现已被许多其他研究所验证和复制。相比之下,bvFTD则表现为前岛叶、前扣带回(ACC)、纹状体和丘脑区域的萎缩,这些区域与突显网络(SN)相对应。该网络在突显加工中的作用被强调,因为其关键节点ACC和前岛叶会在对各种具有情绪意义的内外刺激或条件做出反应时激活。尽管DMN的部分区域在面对各种认知任务时通常会降低活跃度,但DMN的组成部分通常与情景记忆、心理状态归因和视觉空间想象等功能有关。值得注意的是,尽管bvFTD中前部SN发生退化,但后部皮层的功能仍然存在甚至增强。相比之下,AD在丧失情景记忆和视空间功能的同时,仍然保留了社会情绪功能。基于健康大脑中突显网络和默认模式网络之间的反向相关关系,以及AD和bvFTD相反的症状缺陷特征,Zhou等人(2010)利用基于ICA的rsfMRI内在连接网络(ICN)映射发现了AD和bvFTD中DMN和SN的功能连接变化存在差异。具体而言,bvFTD中的SN连接受损,而在AD中则增强;反之,AD中的DMN连接受损,但在bvFTD中则增强(图3)。右侧前岛叶的SN连接障碍也与bvFTD患者的疾病严重程度相关。AD和bvFTD中的这些不同网络特征得到了许多无任务fMRI和其他影像学方法所得结果的支持。

图3.bvFTD和AD具有不同的SN和DMN动力学特征。

AD变异型表现出不同的网络变化:许多AD患者除了记忆障碍外,还会出现其他认知缺陷,比如语言能力、执行功能和高级视觉功能受损。三种主要的AD变异型包括原发性进行性失语症(lvPPA)、后皮质萎缩(PCA)和早发性阿尔茨海默病(EOAD)。除了常见的后部DMN萎缩外,AD变异型还会在与执行功能、语言或视觉功能相关的特定脑区出现萎缩和代谢减退。与此同时,来自rsfMRI研究的证据表明,不同类型AD患者在大脑中的病变模式和网络连接的变化,可能解释了他们在症状和大脑结构上的差异。Lehmann等人(2013)使用基于种子的方法证明了AD特定变体的萎缩与健康对照组中缺陷相关功能网络之间的拓扑相似性(图4)。具体来说,除了AD患者的后部DMN萎缩外,这项研究通过在健康对照组中寻找与这些萎缩区域相关的功能性脑网络,从而揭示了不同类型AD患者的认知缺陷与内在功能网络之间的联系。

图4.基于特定萎缩ROIs构建的种子区域功能连接网络与最佳拟合的功能网络模板之间存在重叠。

关于FTD变异中网络变化的新证据:虽然针对FTD变异型的研究数量不如AD多,但基于rsfMRI的研究表明在FTD的不同类型中存在明显的网络功能异常。语义性额颞叶痴呆(SvPPA)与前颞叶和多个语言处理区域之间的广泛功能连接障碍有关。非流利失语型额颞叶痴呆(NfvPPA)则与额下回锚定的网络有关。虽然NfvPPA中的功能连接模式尚未直接研究,但最近一项关于原发性进行性失语症患者的rsfMRI研究发现,辅助运动区与包括左外侧前额叶皮层在内的语言处理区域之间的功能连接减少。更重要的是,特定的功能连接变化与FTD变异型的行为障碍有关。无论是bvFTD还是svPPA患者,都表现出前额叶与边缘系统连接减弱,这与较低的失抑制评分相关,而前额叶皮层内的局部连接增强则与冷漠评分相关。最近的研究通过对全脑功能连接组进行图论分析,揭示了bvFTD和svPPA患者的网络拓扑结构存在明显异常。值得注意的是,bvFTD患者在前额叶区域(包括ACC、眶额皮层和尾状核)的连接发生了变化,这与执行功能障碍相关(图5a),而svPPA患者则在颞下区和腹侧颞区及枕叶区域的连接网络发生了变化,并且这些区域的节点度也减少了(图5b)。此外,将网络中心性与社会-执行行为测量结合使用,能够以较高的分类率将bvFTD患者与健康对照和额岛脑卒中患者区分开来。

图5.图论分析揭示了FTD患者关键功能区域的连接模式发生了变化。

综上所述,大脑功能退化是由特定症状相关的神经网络驱动的,这支持了神经退行性疾病中的选择性网络崩溃模型(network breakdown model)。

揭示疾病机制及其潜在的神经病理学

网络崩溃模型:来自rsfMRI数据的内在功能连接为疾病进展如何针对特定的大规模网络提供了见解。目前已经提出了至少四个关于疾病的假说,可以总结为:(1)“节点应力”,即受网络大流量影响的区域(即“枢纽”)经历了与活动相关的“损耗”,从而导致疾病的发生或恶化;(2)“跨神经元传播”,其中一些毒性物质沿着网络连接传播,可能通过“朊病毒样”的模板构象变化;(3)“营养失调”,即网络连接中断破坏了节点间营养因子的支持,加速了缺乏侧链营养源的节点内的疾病发展;(4)“共同脆弱性”,即网络区域具有共同的基因或蛋白质表达特征,使其对特定疾病具有易感性,这种易感性在整个网络中均匀分布。这些非互斥的候选网络退化机制提供了不同的视角来理解健康网络结构在疾病发展过程中对特定区域脆弱性的影响。

为了使用健康人群的rsfMRI数据来检验这些相互竞争的预测,Zhou等人(2012)确定了五种神经退行性综合症中的关键网络中心,这些中心的正常连接特征与该综合症相关的萎缩模式最为相似。通过图论分析发现,那些在健康大脑功能连接网络中具有更高总连接流量的区域,以及与关键网络中心之间更短的功能路径,显示出更大的与综合症相关的脆弱性(图6)。也就是说,连接更紧密或流动更强的区域更容易受到该综合症的影响。这一观察结果提出了一个可能性,即这些与神经活动相关的因素(如氧化应激、局部细胞外环境波动或胶质细胞相关现象)可能会影响区域脆弱性。这种影响可能是决定初始发病部位或继发发病(即疾病进展)的关键因素。其次,距离网络中心连接路径较短的节点表现出更大的脆弱性,这表明跨神经元传播可能是导致早期靶点网络退化的关键因素之一。总体而言,跨神经元传播模型适用于整个大脑的靶向和非靶向网络。一个节点在网络中的重要性和其与易受损区域的距离共同影响了其脆弱性。需要进一步的纵向研究来调查基于网络的神经退行性假说,以解释这些核心区域外的变化是如何产生的,以及这些变化是否或如何与症状存在不同的关联。

图6.健康状态下的网络图论连接性测量可以预测疾病中的萎缩严重程度。

与病理生理学的关系:功能连接图谱可以帮助我们理解为什么某些病变和连接异常会特别具有破坏性,并且能够预测潜在的病理状态。例如,通过使用匹兹堡化合物B(PiB)正电子发射断层扫描(PET)技术对AD患者和对照组进行大脑中淀粉样蛋白(Aβ)沉积映射,Buckner等人(2009)发现健康对照组中的默认模式网络(DMN)皮层中心与AD患者中高水平的Aβ沉积相似。这一发现表明,中枢作为信息处理的关键中继站,也可能增强AD的潜在病理级联。静息态功能网络的改变与潜在的疾病病理生理机制有关。在DMN中,Marchitelli等人(2018)发现,轻度认知障碍(MCI)患者的葡萄糖摄取量与AD相关区域(如后扣带皮层,PCC)的网络活动之间存在关联。此外,在aMCI和AD患者中,楔前叶-海马体的功能连接(FC)与海马内的代谢相关,支持海马体失连假说(hippocampus disconnection hypothesis)。基于体素的相关性分析显示,MCI患者楔前叶FC与脑脊液中Aβ42/P-tau181p比率相关。同样,在MCI患者和健康对照组中,β-淀粉样蛋白负荷增加与控制灰质密度后的PCC全脑FC降低相关。相比之下,AD患者的研究结果相对复杂且不一致。Adriaanse等人(2014)发现DMN的功能活动水平与淀粉样蛋白沉积没有明显的关系。然而,Malpas等人(2016)的研究报告称,CSF p-tau和CSF Aβ均与AD中的功能网络有关。具体而言,CSF p-tau与右前内嗅皮层为中心的FC网络相关联,而CSF Aβ则与前DMN相关联。综上所述,静息态FC网络与病理生物标志物之间存在不同的关联,并且这种关系可能会在疾病的不同阶段表现出不同的模式。

鉴别诊断:基于痴呆患者和健康对照之间不同的功能连接模式,研究人员开发了基于功能连接的生物标志物来区分痴呆亚型和对照组。使用rsfMRI,Greicius等人(2004)计算了个体水平的DMN拟合优度评分,该研究结果显示,能够以85%的敏感性和75%的特异性区分AD患者与健康对照组。通过对rsfMRI数据进行图论分析,得出的聚类系数能够以72%的敏感性和78%的特异性将AD患者与对照组区分开来。有研究计算了116个感兴趣区域之间的全脑相关性连接,并在AD组与非AD组(MCI和对照组)之间实现了85%的敏感性和80%的特异性。使用图论测量方法,Khazaee等人(2017)能够以93.3%的准确率对AD、MCI和对照组个体进行分类;此外,中心节点计数显示出从对照组到AD患者之间存在逐渐减少的趋势,这表明AD的网络通信存在异常。这种分类成功及中心节点受损的影响与Dai等人(2015)的研究结果一致,后者证明在AD中不仅存在网络间的连接受损,还有以中心节点为导向的功能受损。基于bvFTD和AD在SN和DMN上具有不同的连接效应,Zhou等人(2010)提出结合这两个网络的汇总评分能够更好地区分bvFTD与AD,以及各患者组与健康对照,在三组分类中达到了92%的敏感性和96%的特异性,并在AD与bvFTD之间实现了100%的区分。这表明分析这些连接性变化可以更准确地识别和评估疾病状态。然而,需要在多个独立数据集和临床样本中进行验证,以确保研究结果的可靠性和准确性。

结论

综上所述,在基于网络退化原理的框架下,基于rsfMRI的功能连接映射已经揭示了一系列神经退行性疾病综合症中组水平的功能脑网络变化、临床前和前驱期的易感模式、疾病进展的预测、疾病中的选择性网络崩溃机制,以及与分子病理变化(如淀粉样蛋白和tau蛋白累积)的内表型的关联。越来越多的研究者希望利用基于rsfMRI的功能连接来评估干预效果,并根据患者的具体情况制定个性化治疗方案。然而,基于rsfMRI的功能连接映射涉及复杂的预处理和数据分析步骤,以便能够对痴呆患者的脑网络功能障碍做出科学且有临床意义的推断。此外,随着该领域正朝着开放科学方向发展,强调透明且可重复的研究以及跨多个地点的数据共享,确保在收集、分析和推断rsfMRI数据时遵循良好的实践也变得尤为重要。

参考文献(上下滑动查看):

Zhou, J.H., Ng, K.K., Liu, S. (2020). Brain Network Functional Connectivity in Alzheimer’s Disease and Frontotemporal Dementia. http://doi.org/10.1007/978-3-030-41874-8_25

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52. http://doi.org/10.1016/j.neuron.2009.03.024

Qian S, Zhang Z, Li B, Sun G (2015) Functional-structural degeneration in dorsal and ventral attention systems for Alzheimer’s disease, amnestic mild cognitive impairment. Brain Imaging Behav 9(4):790–800. http://doi.org/10.1007/s11682-014-9336-6

Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101(13):4637–4642

Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD et al (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133(5):1352–1367

Lehmann M, Madison CM, Ghosh PM, Seeley WW, Mormino E, Greicius MD et al (2013) Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc Natl Acad Sci U S A 110(28):11606–11611. http://doi.org/10.1073/pnas.1221536110

Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW (2012) Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73(6):1216–1227. http://doi.org/10.1016/j.neuron.2012.03.004

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

Marchitelli R, Aiello M, Cachia A, Quarantelli M, Cavaliere C, Postiglione A et al (2018) Simultaneous resting-state FDG-PET/fMRI in Alzheimer disease: relationship between glucose metabolism and intrinsic activity. NeuroImage 176:246–258. http://doi.org/10.1016/j.neuroimage.2018.04.048

Adriaanse SM, Sanz-Arigita EJ, Binnewijzend MA, Ossenkoppele R, Tolboom N, van Assema DM et al (2014) Amyloid and its association with default network integrity in Alzheimer’s disease. Hum Brain Mapp 35(3):779–791. http://doi.org/10.1002/hbm.22213

Malpas CB, Saling MM, Velakoulis D, Desmond P, O'Brien TJ (2016) Differential functional connectivity correlates of cerebrospinal fluid biomarkers in dementia of the Alzheimer’s type. Neurodegener Dis 16(3-4):147–151. http://doi.org/10.1159/000438924

Khazaee A, Ebrahimzadeh A, Babajani-Feremi A, Alzheimer’s Disease Neuroimaging Initiative (2017) Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav Brain Res 322(Pt B):339–350. http://doi.org/10.1016/j.bbr.2016.06.043

Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M et al (2015) Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s disease. Cereb Cortex 25(10):3723–3742. http://doi.org/10.1093/cercor/bhu246

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值