高斯PDF的性质及其推论

本文详细探讨了高斯概率密度函数(PDF),包括标量和多元高斯分布的性质,如加减运算、乘法原理以及独立高斯变量的乘积。此外,还介绍了瑞利分布和莱斯分布,并讨论了它们在信号检测中的应用。
摘要由CSDN通过智能技术生成

0 符号声明

(1)粗体字表示矢量或者矩阵,如 x 表示 N 维矢量。
(2) N(x|μ,Σ) 表示随机矢量 x 是服从均值为 μ 、协方差矩阵为 Σ 的高斯PDF的高斯矢量。
(3) N(μ,Σ) 表示均值为 μ 、协方差矩阵为 Σ 的多元高斯分布。
(4)’ ’,表示正比于,如 xy 表示 x=ay a 为常数。

1 标量高斯PDF

X 是均值为 a ,方差为 A 的高斯随机变量,则其概率密度函数为

pX(x)=12πAexp[(xa)22A]

(1)均值是否为 μ
E[X]=+x12πAexp[(xa)22A]dx=(a)+(y+a)12πAexp(y22A)dy=+y12πAexp(y22A)dy+a+12πAexp(y22A)dy=μ

其中步骤 (a) 作了变量替换 y=xa

(2)方差是否为 A ?

D(X)=+(xa)212πAexp[(xa)22A]dx=(b)+y212πAexp[y22A]dy=2+0y212πAexp(y22A)dy=22πA[Ayexp(y22A)|+0+A+0exp(y22A)dy]=A

(3)该高斯PDF是否满足概率归‘1’性?

[+pX(x)dx]2=(+pX(x)dx)(+pX(y)dy)=12πA++exp[(xa)22A]exp[(ya)22A]dxdy=(c)12πA++exp(m2+n22A)dmdn=(d)12πA2π0dθ+0exp(r22A)dr.r=1

其中步骤 (c) 做了变量替换 m=xa,n=ya 。步骤 (d) 将笛卡尔坐标转换到极坐标。

2. 高斯随机变量的加减

定理

假设 XN(a,A),YN(b,B) ,且 X Y 相互独立,则随机变量 Z=nX+mY ( n,m 为任意常数) 服从 ZN(na+mb,n2A+m2B) .

该定理可以通过特征函数进行证明,这里采用从累计分布函数与概率密度函数的关系来证明,分为如下两个部分

(1)假设 XN(a,A) , 则 nXN(na,n2A)
证明: 令 Z=nX ,则该随机变量的累积分布函数(Cumulative distribution function, CDF)为

PZ(Zz)=PZ(nXz)=PZ(Xzn)=z/n12πAexp[(xa)22A]dx

对应有,该随机变量的概率密度函数(Probability density function, PDF)为
pZ(z)=dPz(Zz)dz=12πn2Aexp(zna)22A=12πn2Aexp[(zna)22n2A]

(2)证明 nX+mYN(na+mb,n2A+m2B)

证明: 令 Φ=nX , Ψ=mY . 由于 X Y 相互独立,因此 Φ Ψ 也是相互独立。 Φ Ψ 的联合高斯PDF为

pΦ,Ψ(ϕ,ψ)=
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值