0 符号声明
(1)粗体字表示矢量或者矩阵,如 x 表示 N 维矢量。
(2)
N(x|μ,Σ)
表示随机矢量 x 是服从均值为 μ 、协方差矩阵为 Σ 的高斯PDF的高斯矢量。
(3) N(μ,Σ) 表示均值为 μ 、协方差矩阵为 Σ 的多元高斯分布。
(4)’ ∝ ’,表示正比于,如 x∝y 表示 x=ay , a 为常数。
1 标量高斯PDF
设
X
是均值为 a ,方差为
A
的高斯随机变量,则其概率密度函数为
pX(x)=12πA−−−−√exp[−(x−a)22A]
(1)均值是否为
μ
?
E[X]=∫+∞−∞x12πA−−−−√exp[−(x−a)22A]dx=(a)∫+∞−∞(y+a)12πA−−−−√exp(−y22A)dy=∫+∞−∞y12πA−−−−√exp(−y22A)dy+a∫+∞−∞12πA−−−−√exp(−y22A)dy=μ
其中步骤
(a)
作了变量替换
y=x−a
。
(2)方差是否为 A ?
D(X)=∫+∞−∞(x−a)212πA−−−−√exp[−(x−a)22A]dx=(b)∫+∞−∞y212πA−−−−√exp[−y22A]dy=2∫+∞0y212πA−−−−√exp(−y22A)dy=22πA−−−−√[−Ayexp(−y22A)|+∞0+A∫+∞0exp(−y22A)dy]=A
(3)该高斯PDF是否满足概率归‘1’性?
[∫+∞−∞pX(x)dx]2=(∫+∞−∞pX(x)dx)(∫+∞−∞pX(y)dy)=12πA∫+∞−∞∫+∞−∞exp[−(x−a)22A]exp[−(y−a)22A]dxdy=(c)12πA∫+∞−∞∫+∞−∞exp(−m2+n22A)dmdn=(d)12πA∫2π0dθ∫+∞0exp(−r22A)dr.r=1
其中步骤
(c)
做了变量替换
m=x−a,n=y−a
。步骤
(d)
将笛卡尔坐标转换到极坐标。
2. 高斯随机变量的加减
定理:
假设 X∼N(a,A),Y∼N(b,B) ,且 X 与
Y
相互独立,则随机变量 Z=nX+mY ( n,m 为任意常数) 服从 Z∼N(na+mb,n2A+m2B) .
该定理可以通过特征函数进行证明,这里采用从累计分布函数与概率密度函数的关系来证明,分为如下两个部分
(1)假设 X∼N(a,A) , 则 nX∼N(na,n2A)
证明: 令 Z=nX ,则该随机变量的累积分布函数(Cumulative distribution function, CDF)为
PZ(Z≤z)=PZ(nX≤z)=PZ(X≤zn)=∫z/n−∞12πA−−−−√exp[−(x−a)22A]dx
对应有,该随机变量的概率密度函数(Probability density function, PDF)为
pZ(z)=dPz(Z≤z)dz=12πn2A−−−−−−√exp⎡⎣−(zn−a)22A⎤⎦=12πn2A−−−−−−√exp[−(z−na)22n2A]
(2)证明
nX+mY∼N(na+mb,n2A+m2B)
证明: 令 Φ=nX , Ψ=mY . 由于 X 与
Y
相互独立,因此 Φ 与 Ψ 也是相互独立。 Φ 与 Ψ 的联合高斯PDF为
pΦ,Ψ(ϕ,ψ)=