背景
这是在学习数学看的第一本科普类数学书,大概记录了一下看每章的读后感,记录一下。
-
第一章
第一部分简单的讲解了线性模型,泰勒展开,线性回归,大数定理以及负数等等概念;用一些实际生活中的例子来帮助读者理解这些概念,以及为什么数学家会从实际生活中抽象出这些概念。 -
第二章
这一章有点晦涩,主要介绍了假设检验及其局限性,即小概率事件并不是不可能发生,只是发生概率较小而已。另外本章还简单介绍了贝叶斯,表明了先验概率也非常重要,而不仅仅只是观测的样本重要。 -
第三章
这一章主要在讲与期望相关的内容,重点讲了如何利用期望购买“Cash WinFall”彩票,并且盈利。除此之外,这一章还额外的讲到虽然买彩票时随机号码和特殊设计的号码的期望一致,但是特殊设计的号码可以具有更低的方差(这里的方差我还没有看到数学定义,但是举个例子,事件A可以100%得到10元,事件B是50%亏损10元,50%得到20元。事件A,B期望一致,但是A方差更低)的组合明显更好。
这一章节,最后一点点讲到了几何-彩票-香农信息论之间的关系,有点意思。 -
第四章
第四章,从身高分布开始讲到了高斯分布,并说明分布产生的原因包括遗传和环境因素;然后从高斯分布讲到了相关性,强调相关性与因果关系并不等价,即两个变量相关并不一定真的有因果关系,不相关也不表明没有因果关系;最后又表明了相关性和几何里余弦和椭圆之间的关系,越圆表示不相关,越瘪越相关。
另外还串联了一些,相关性用于数据压缩和同时利用相关与期望进行决策的案例。 -
第五章
最后一章首先讲了三种不同的选举策略,包括美国策略,实时复选策略和两两对决策略。不得不说,虽然这些策略看起来差不多,但是结果却完全不同。最后一点点还扯了一些数学理论的东西,讨论了由一些基础公理定理构建出整个系统的可能性。
结语
整体而言,这本书还是很不错的。但是不得不说翻译很打脑壳,有的时候翻译的莫名其妙。切记!!!