0. 期望预测
首先定义: 在一个训练集D上的模型, 对于测试样本x的预测值为
在不同训练集D上训练出的模型,
对同一个测试样本x的预测值取期望, 即期望预测--- ![\bar{f}(x)=E_D[f(x;D)]](https://i-blog.csdnimg.cn/blog_migrate/0834494869d1c5d6e3fee706af4962b9.gif)
偏差\方差\噪声都是针对测试样本来计算的
即,将一个测试样本x输入到模型中,计算出
偏差方差和噪声都是针对于同一个样本x,不同模型的输出值
进行相应计算的
本文详细探讨了偏差、方差、噪声在机器学习中的概念及它们与泛化误差的关系。偏差衡量模型预测与真实值的偏离,方差反映了训练集变动对模型性能的影响,噪声则表示数据标记的不确定性。过拟合和欠拟合分别由高方差和高偏差引起。模型复杂度增加会降低偏差但可能提高方差,最佳复杂度位于总误差最小处。
首先定义: 在一个训练集D上的模型, 对于测试样本x的预测值为
在不同训练集D上训练出的模型,
对同一个测试样本x的预测值取期望, 即期望预测--- ![\bar{f}(x)=E_D[f(x;D)]](https://i-blog.csdnimg.cn/blog_migrate/0834494869d1c5d6e3fee706af4962b9.gif)
偏差\方差\噪声都是针对测试样本来计算的
即,将一个测试样本x输入到模型中,计算出
偏差方差和噪声都是针对于同一个样本x,不同模型的输出值
进行相应计算的
1494
4400
552
1万+

被折叠的 条评论
为什么被折叠?