图优化理论与g2o的使用(3)

转载自 半闲居士  在这里,感谢博主的无私分享。

内容提要

  讲完了优化的基本知识,我们来看一下g2o的结构。本篇将讨论g2o的代码结构,并带着大家一起写一个简单的双视图bundle adjustment:从两张图像中估计相机运动和特征点位置。你可以把它看成一个基于稀疏特征点的单目VO。


g2o的结构

  g2o全称是什么?来跟我大声说一遍:General Graph Optimization!你可以叫它g土o,g二o,g方o,总之我也不知道该怎么叫它……

  所谓的通用图优化。

  为何叫通用呢?g2o的核里带有各种各样的求解器,而它的顶点、边的类型则多种多样。通过自定义顶点和边,事实上,只要一个优化问题能够表达成图,那么就可以用g2o去求解它。常见的,比如bundle adjustment,ICP,数据拟合,都可以用g2o来做。甚至我还在想神经网络能不能写成图优化的形式呢……

  从代码层面来说,g2o是一个c++编写的项目,用cmake构建。它的github地址在:https://github.com/RainerKuemmerle/g2o 

  它是一个重度模板类的c++项目,其中矩阵数据结构多来自Eigen。首先我们来扫一眼它的目录下面都有什么吧:

  如你所见,g2o项目中含有若干文件夹。刨开那些gitignore之类的零碎文件,主要有以下几个:

  • EXTERNAL  三方库,有ceres, csparse, freeglut,可以选择性地编译;
  • cmake_modules  给cmake用来寻找库的文件。我们用g2o时也会用它里头的东西,例如FindG2O.cmake
  • doc     文档。包括g2o自带的说明书(难度挺大的一个说明文档)。
  • g2o      最重要的源代码都在这里!
  • script    在android等其他系统编译用的脚本,由于我们在ubuntu下就没必要多讲了。

   综上所述,最重要的就是g2o的源代码文件啦!所以我们要进一步展开看一看!

   我们同样地介绍一下各文件夹的内容:

  • apps    一些应用程序。好用的g2o_viewer就在这里。其他还有一些不常用的命令行工具等。
  • core    核心组件,很重要!基本的顶点、边、图结构的定义,算法的定义,求解器接口的定义在这里。
  • examples  一些例程,可以参照着这里的东西来写。不过注释不太多。
  • solvers    求解器的实现。主要来自choldmod, csparse。在使用g2o时要先选择其中一种。
  • stuff    对用户来讲可有可无的一些工具函数。
  • types    各种顶点和边,很重要!我们用户在构建图优化问题时,先要想好自己的顶点和边是否已经提供了定义。如果没有,要自己实现。如果有,就用g2o提供的即可。

  就经验而言,solvers给人的感觉是大同小异,而 types 的选取,则是 g2o 用户主要关心的内容。然后 core 下面的内容,我们要争取弄的比较熟悉,才能确保使用中出现错误可以正确地应对。

  那么,g2o最基本的类结构是怎么样的呢?我们如何来表达一个Graph,选择求解器呢?我们祭出一张图:

  这个图第一次看,可能觉得有些混乱。但是随着g2o越用越多,你会发现越来越喜欢这个图……现在请读者跟着我的顺序来看这个图。

  先看上半部分。SparseOptimizer 是我们最终要维护的东东。它是一个Optimizable Graph,从而也是一个Hyper Graph。一个 SparseOptimizer 含有很多个顶点 (都继承自 Base Vertex)和很多个边(继承自 BaseUnaryEdge, BaseBinaryEdge或BaseMultiEdge)。这些 Base Vertex 和 Base Edge 都是抽象的基类,而实际用的顶点和边,都是它们的派生类。我们用 SparseOptimizer.addVertex 和 SparseOptimizer.addEdge 向一个图中添加顶点和边,最后调用 SparseOptimizer.optimize 完成优化。

  在优化之前,需要指定我们用的求解器和迭代算法。从图中下半部分可以看到,一个 SparseOptimizer 拥有一个 Optimization Algorithm,继承自Gauss-Newton, Levernberg-Marquardt, Powell's dogleg 三者之一(我们常用的是GN或LM)。同时,这个 Optimization Algorithm 拥有一个Solver,它含有两个部分。一个是 SparseBlockMatrix ,用于计算稀疏的雅可比和海塞; 一个是用于计算迭代过程中最关键的一步

HΔx=b HΔx=−b
这就需要一个线性方程的求解器。而这个求解器,可以从 PCG, CSparse, Choldmod 三者选一。

  综上所述,在g2o中选择优化方法一共需要三个步骤:

  1. 选择一个线性方程求解器,从 PCG, CSparse, Choldmod中选,实际则来自 g2o/solvers 文件夹中定义的东东。
  2. 选择一个 BlockSolver 。
  3. 选择一个迭代策略,从GN, LM, Doglog中选。

  这样一来,读者是否对g2o就更清楚的认识了呢?

  小萝卜:师兄你慢点,我已经晕了……


双视图bundle adjustment:

  既然小萝卜同学已经晕了,想必我们也成功地把读者朋友都绕进去了。既绕之则绕之,下面我们来通过一个实例,更深入地理解 g2o 的用法。这个实例是什么呢?我们来写一个双视图的bundle adjustment吧!

  代码的git地址:https://github.com/gaoxiang12/g2o_ba_example

  首先,师兄还是拿出那两张万年不变的老图:

  我们的目标是估计这两个图之间的运动。虽然我们在《一起做》里讲过这件事怎么做了,但那是在RGBD的条件下。现在,我们没有深度图,只有这两张图像和相机内参,请问如何估计相机的运动?

  呃,这个问题好像还挺复杂的。我们需要用一点数学来描述它。所以请大家耐心看我推一会儿公式。

  求解这个问题,当下有两种思路。其一是通过特征点来求,其二是直接通过像素来求。第一种也叫做 sparse 方式,第二种叫做相对的 dense 方式。由于主流仍在用特征点,所以我们例程也用特征点。

  特征点方法的观点是:一个图像可以用几百个具有代表性的,比较稳定的点来表示。一旦我们有了这些点,就可以忽略图中的其余部分,而只关注这些点。(dense 思路则反对这一观点,认为它丢弃了图像大部分信息,毕竟一个640x480的图有30万个点,而特征点只有几百个)。

  采用特征点的思路,那么问题变为:给定 N N个两张图中一一对应的点,记作:

z1={z11,z21,,zN1},z2={z12,z22,,zN2} z1={z11,z12,…,z1N},z2={z21,z22,…,z2N}
以及相机内参矩阵  C C,求解两个图中的相机运动 R,t R,t

  注:字符 z z的上标不是几次方的意思,而是第几个点。采用上标的原因是为了避免双下标带来的麻烦。同时,每个点的具体值 z z,是指该点对应的像素坐标: zji=[u,v]ji zij=[u,v]ij,它们是二维的。

  

  小萝卜:师兄啊,这图一股浓浓的山寨味啊。

  不管它,总之,假设相机1的位姿为单位矩阵,对于任意一个特征点,它在三维空间的真实坐标位于  Xj Xj,而在两个相机坐标系上看来是  zj1,zj2 z1j,z2j。根据投影关系,我们有:

λ1[zj11]=CXj,λ2[zj21]=C(RXj+t)(1) (1)λ1[z1j1]=CXj,λ2[z2j1]=C(RXj+t)

   这里的  λ1,λ2 λ1,λ2 表示两个像素的深度值,说白了也就是相机1坐标下 Xj Xj z z坐标。虽然我们不知道这个实际的 Xj Xj是什么,但它和 z z之间的关系,是可以列写出来的。

   这个问题的传统求解方式,是把两个方程中的 Xj Xj消去,得到只关于 z,R,t z,R,t的关系式,然后进行优化。这条道路通向对极几何和基础矩阵(Essential Matrix),理论上,我们需要大于八个的匹配点就能计算出 R,t R,t。但这里我们并不这样做,因为我们是在介绍图优化嘛。

  在图优化中,我们构建一个优化问题,并表示成图去求解。这里的优化问题是什么呢?这可以这样写:

minXj,R,t1λ1CXj[zj1,1]T2+1λ2C(RXj+t)[zj2,1]T2(2) (2)minXj,R,t⁡∥1λ1CXj−[z1j,1]T∥2+∥1λ2C(RXj+t)−[z2j,1]T∥2
 

  由于各种噪声的存在,投影关系不能完美满足,所以我们转而优化它们误差的二范数。那么对每一个特征点,我们都能写出这样一个二范数的误差项。对它们进行求和,就得到了整个优化问题:

minX,R,tj=1N1λ1CXj[zj1,1]T2+1λ2C(RXj+t)[zj2,1]T2(3) (3)minX,R,t⁡∑j=1N∥1λ1CXj−[z1j,1]T∥2+∥1λ2C(RXj+t)−[z2j,1]T∥2

  它叫做最小化重投影误差问题(Minimization of Reprojection error)。当然,它很遗憾地,是个非线性,非凸的优化问题,这意味着我们不一定能求解它,也不一定能找到全局最优的解。在实际操作中,我们实际上是在调整每个 Xj Xj,使得它们更符合每一次观测 zj zj,也就是使每个误差项都尽量的小。由于这个原因,它也叫做捆集调整(Bundle Adjustment)。

  BA很容易表述成图优化的形式。在这个双视图BA中,一种有两种结点:

  • 相机位姿结点:表达两个相机所在的位置,是一个 SE(3) SE(3)里的元素。
  • 特征点的空间位置结点:是一个XYZ坐标。

  相应的,边主要表示空间点到像素坐标的投影关系。也就是

λ[zj1]=C(RXj+t) λ[zj1]=C(RXj+t)
这件事情喽。


 实现

  下面我们来用g2o实现一下BA。选取的结点和边如下:

  • 结点1:相机位姿结点:g2o::VertexSE3Expmap,来自<g2o/types/sba/types_six_dof_expmap.h>;
  • 结点2:特征点空间坐标结点:g2o::VertexSBAPointXYZ,来自<g2o/types/sba/types_sba.h>;
  • 边:重投影误差:g2o::EdgeProjectXYZ2UV,来自<g2o/types/sba/types_six_dof_expmap.h>;

  为了给读者更深刻的印象,我们显示一下边的源码(也请读者最好亲自打开g2o下这几个文件看一下顶点和边的定义):

  这个是 EdgeProjectXYZ2UV 边的定义。它是一个Binary Edge,后面的模板参数表示,它的数据是2维的,来自Eigen::Vector2D,它连接的两个顶点必须是 VertexSBAPointXYZ, VertexSE3Expmap。 我们还能看到它的 computeError 定义,和前面给出的公式是一致的。注意到计算Error时,它调用了 g2o::CameraParameters 作为参数,所以我们在设置这条边时也需要给定一个相机参数。

  铺垫了那么多之后,给出我们的源码:

/**
 * BA Example 
 * Author: Xiang Gao
 * Date: 2016.3
 * Email: gaoxiang12@mails.tsinghua.edu.cn
 * 
 * 在这个程序中,我们读取两张图像,进行特征匹配。然后根据匹配得到的特征,计算相机运动以及特征点的位置。这是一个典型的Bundle Adjustment,我们用g2o进行优化。
 */

// for std
#include <iostream>
// for opencv 
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <boost/concept_check.hpp>
// for g2o
#include <g2o/core/sparse_optimizer.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/robust_kernel.h>
#include <g2o/core/robust_kernel_impl.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/cholmod/linear_solver_cholmod.h>
#include <g2o/types/slam3d/se3quat.h>
#include <g2o/types/sba/types_six_dof_expmap.h>


using namespace std;

// 寻找两个图像中的对应点,像素坐标系
// 输入:img1, img2 两张图像
// 输出:points1, points2, 两组对应的2D点
int     findCorrespondingPoints( const cv::Mat& img1, const cv::Mat& img2, vector<cv::Point2f>& points1, vector<cv::Point2f>& points2 );

// 相机内参
double cx = 325.5;
double cy = 253.5;
double fx = 518.0;
double fy = 519.0;

int main( int argc, char** argv )
{
    // 调用格式:命令 [第一个图] [第二个图]
    if (argc != 3)
    {
        cout<<"Usage: ba_example img1, img2"<<endl;
        exit(1);
    }
    
    // 读取图像
    cv::Mat img1 = cv::imread( argv[1] ); 
    cv::Mat img2 = cv::imread( argv[2] ); 
    
    // 找到对应点
    vector<cv::Point2f> pts1, pts2;
    if ( findCorrespondingPoints( img1, img2, pts1, pts2 ) == false )
    {
        cout<<"匹配点不够!"<<endl;
        return 0;
    }
    cout<<"找到了"<<pts1.size()<<"组对应特征点。"<<endl;
    // 构造g2o中的图
    // 先构造求解器
    g2o::SparseOptimizer    optimizer;
    // 使用Cholmod中的线性方程求解器
    g2o::BlockSolver_6_3::LinearSolverType* linearSolver = new  g2o::LinearSolverCholmod<g2o::BlockSolver_6_3::PoseMatrixType> ();
    // 6*3 的参数
    g2o::BlockSolver_6_3* block_solver = new g2o::BlockSolver_6_3( linearSolver );
    // L-M 下降 
    g2o::OptimizationAlgorithmLevenberg* algorithm = new g2o::OptimizationAlgorithmLevenberg( block_solver );
    
    optimizer.setAlgorithm( algorithm );
    optimizer.setVerbose( false );
    
    // 添加节点
    // 两个位姿节点
    for ( int i=0; i<2; i++ )
    {
        g2o::VertexSE3Expmap* v = new g2o::VertexSE3Expmap();
        v->setId(i);
        if ( i == 0)
            v->setFixed( true ); // 第一个点固定为零
        // 预设值为单位Pose,因为我们不知道任何信息
        v->setEstimate( g2o::SE3Quat() );
        optimizer.addVertex( v );
    }
    // 很多个特征点的节点
    // 以第一帧为准
    for ( size_t i=0; i<pts1.size(); i++ )
    {
        g2o::VertexSBAPointXYZ* v = new g2o::VertexSBAPointXYZ();
        v->setId( 2 + i );
        // 由于深度不知道,只能把深度设置为1了
        double z = 1;
        double x = ( pts1[i].x - cx ) * z / fx; 
        double y = ( pts1[i].y - cy ) * z / fy; 
        v->setMarginalized(true);
        v->setEstimate( Eigen::Vector3d(x,y,z) );
        optimizer.addVertex( v );
    }
    
    // 准备相机参数
    g2o::CameraParameters* camera = new g2o::CameraParameters( fx, Eigen::Vector2d(cx, cy), 0 );
    camera->setId(0);
    optimizer.addParameter( camera );
    
    // 准备边
    // 第一帧
    vector<g2o::EdgeProjectXYZ2UV*> edges;
    for ( size_t i=0; i<pts1.size(); i++ )
    {
        g2o::EdgeProjectXYZ2UV*  edge = new g2o::EdgeProjectXYZ2UV();
        edge->setVertex( 0, dynamic_cast<g2o::VertexSBAPointXYZ*>   (optimizer.vertex(i+2)) );
        edge->setVertex( 1, dynamic_cast<g2o::VertexSE3Expmap*>     (optimizer.vertex(0)) );
        edge->setMeasurement( Eigen::Vector2d(pts1[i].x, pts1[i].y ) );
        edge->setInformation( Eigen::Matrix2d::Identity() );
        edge->setParameterId(0, 0);
        // 核函数
        edge->setRobustKernel( new g2o::RobustKernelHuber() );
        optimizer.addEdge( edge );
        edges.push_back(edge);
    }
    // 第二帧
    for ( size_t i=0; i<pts2.size(); i++ )
    {
        g2o::EdgeProjectXYZ2UV*  edge = new g2o::EdgeProjectXYZ2UV();
        edge->setVertex( 0, dynamic_cast<g2o::VertexSBAPointXYZ*>   (optimizer.vertex(i+2)) );
        edge->setVertex( 1, dynamic_cast<g2o::VertexSE3Expmap*>     (optimizer.vertex(1)) );
        edge->setMeasurement( Eigen::Vector2d(pts2[i].x, pts2[i].y ) );
        edge->setInformation( Eigen::Matrix2d::Identity() );
        edge->setParameterId(0,0);
        // 核函数
        edge->setRobustKernel( new g2o::RobustKernelHuber() );
        optimizer.addEdge( edge );
        edges.push_back(edge);
    }
    
    cout<<"开始优化"<<endl;
    optimizer.setVerbose(true);
    optimizer.initializeOptimization();
    optimizer.optimize(10);
    cout<<"优化完毕"<<endl;
    
    //我们比较关心两帧之间的变换矩阵
    g2o::VertexSE3Expmap* v = dynamic_cast<g2o::VertexSE3Expmap*>( optimizer.vertex(1) );
    Eigen::Isometry3d pose = v->estimate();
    cout<<"Pose="<<endl<<pose.matrix()<<endl;
    
    // 以及所有特征点的位置
    for ( size_t i=0; i<pts1.size(); i++ )
    {
        g2o::VertexSBAPointXYZ* v = dynamic_cast<g2o::VertexSBAPointXYZ*> (optimizer.vertex(i+2));
        cout<<"vertex id "<<i+2<<", pos = ";
        Eigen::Vector3d pos = v->estimate();
        cout<<pos(0)<<","<<pos(1)<<","<<pos(2)<<endl;
    }
    
    // 估计inlier的个数
    int inliers = 0;
    for ( auto e:edges )
    {
        e->computeError();
        // chi2 就是 error*\Omega*error, 如果这个数很大,说明此边的值与其他边很不相符
        if ( e->chi2() > 1 )
        {
            cout<<"error = "<<e->chi2()<<endl;
        }
        else 
        {
            inliers++;
        }
    }
    
    cout<<"inliers in total points: "<<inliers<<"/"<<pts1.size()+pts2.size()<<endl;
    optimizer.save("ba.g2o");
    return 0;
}


int     findCorrespondingPoints( const cv::Mat& img1, const cv::Mat& img2, vector<cv::Point2f>& points1, vector<cv::Point2f>& points2 )
{
    cv::ORB orb;
    vector<cv::KeyPoint> kp1, kp2;
    cv::Mat desp1, desp2;
    orb( img1, cv::Mat(), kp1, desp1 );
    orb( img2, cv::Mat(), kp2, desp2 );
    cout<<"分别找到了"<<kp1.size()<<"和"<<kp2.size()<<"个特征点"<<endl;
    
    cv::Ptr<cv::DescriptorMatcher>  matcher = cv::DescriptorMatcher::create( "BruteForce-Hamming");
    
    double knn_match_ratio=0.8;
    vector< vector<cv::DMatch> > matches_knn;
    matcher->knnMatch( desp1, desp2, matches_knn, 2 );
    vector< cv::DMatch > matches;
    for ( size_t i=0; i<matches_knn.size(); i++ )
    {
        if (matches_knn[i][0].distance < knn_match_ratio * matches_knn[i][1].distance )
            matches.push_back( matches_knn[i][0] );
    }
    
    if (matches.size() <= 20) //匹配点太少
        return false;
    
    for ( auto m:matches )
    {
        points1.push_back( kp1[m.queryIdx].pt );
        points2.push_back( kp2[m.trainIdx].pt );
    }
    
    return true;
}

在这个程序中,我们从命令行参数读取两个图像所在的位置,然后构建一个图估计图像间运动和特征点的空间位置。

  整个工程的编译方式使用cmake,请参考 github 工程进行编译,这里就不详细说明了。(因为肯定又要提一堆Cmake方面的事情。)

  编译完成后,可以运行此程序,结果如下:

  我们显示了特征点的数量,估计的位姿变换,以及各特征点的空间位置。最后,还显示了inliers的数量(我们把误差太大的边认为是outlier):

  在652条边中有614条边是inlier,说明匹配还是挺正确的。


讨论

  关于单目BA还有一点要说,就是 scale 不确定性。由于投影公式中的 λ λ存在,我们只能推得一个相对的深度,而无法确切的知道特征点离我们有多少距离。如果我们把所有特征点的坐标放大一倍,把平移量 t t也乘以二,得到的结果是完全一样的。

  比方说:看奥特曼时,我们并不知道这其实是人类演员在模型里打架。这就是单目带来的尺度不确定性。

  小萝卜:师兄你现在才知道吗?我小时候就知道了啊!


小结

  本节介绍了g2o的大致框架,并提供了一个计算单目双视图Bundle Adjustment的例程供读者练习。



  • 0
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
点云拼接是一种将多个离散的点云数据集合并成一个完整的三维点云模型的技术。而g2o优化则是一种用于SLAM(Simultaneous Localization and Mapping)的优化库。SLAM是一种同时进行自主定位和地构建的技术,而g2o库则提供了实现SLAM优化所需的功能。通过g2o优化,可以优化相机位姿、特征点的位置以及地点的位置等参数,以提高SLAM系统的精度和鲁棒性。在点云拼接中,使用g2o优化可以优化不同点云之间的相对位姿,从而更好地拼接点云数据,减少配准误差,得到更准确的点云模型。所以,g2o优化在点云拼接中起到了优化相机位姿和配准结果的作用,提高了点云拼接的质量和准确性。 <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [视觉SLAM笔记(29) g2o](https://blog.csdn.net/qq_32618327/article/details/102403457)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [slam.rar_G2O_点云特征_点云特征提取_视觉SLAM_视觉SLAM十四讲](https://download.csdn.net/download/weixin_42662293/86207140)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [使用g2o进行静态建时所遇问题及解决方法](https://blog.csdn.net/qq_38815760/article/details/120812996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值