非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响

本篇博客将总结一些常见的g2o用法。通过这篇内容你将至少可以大致掌握g2o的用法,以及一些可以使优化结果更好的小技巧,包括鲁邦和函数、信息矩阵的用法等等。

注意:本篇博客的重点是介绍g2o,所以不会去为非线性化方法做太多的铺垫,因此要想理解以下代码和思路,需要你具备一些非线性优化的理论知识,至少要明白什么是非线性优化,它主要是为了做什么,它是怎么实现的?

我们先来看第一个例子:曲线拟合

1.曲线拟合

在这里插入图片描述

图1

我们现在有以下任务要求:找到一条函数曲线去拟合上图中的这些散点,使得所有点均匀的分散在这个拟合曲线的两侧

散点:图一中那些离散的蓝色圆点。

这里我给出一种思路,主要是为了帮助对非线性优化不是很熟悉的同学。咱们想一下如果有这么一条曲线,所有散点到它的距离之和最小,那么是不是这条曲线就可以很好的拟合这些散点了。

下面我将通过一些数学公式来描述这个数学问题,但是我会省略一些过程。(请不要忘记我们目标是学习g2o的用法)

假设,我们要用来拟合这些散点的函数是: y = a exp ⁡ ( − λ x + b ) y = a\exp(-\lambda x + b) y=aexp(λx+b)

类似的,按照上面说的思路,要实现所有距离之和最小,可以用如下数学式来表达:
min ⁡ a , b , λ ∑ i N ( y i − a exp ⁡ ( − λ x i + b ) ) (1) \min_{a,b,\lambda} \sum_i^N (y_i-a\exp(-\lambda x_i + b)) \tag 1 a,b,λminiN(yiaexp(λxi+b))(1)

当然你也可以构造成的别的形式,方法并不唯一

我们的目标就是找到一组 a , b , λ a,b,\lambda a,b,λ的解,使得式(1)整体值最小,也就是各个点到曲线的距离在 y y y方向的和最小。

数学上处理(1)式的大致思路是:对其进行求导,然后通过导数确定函数值下降的方向,然后通过迭代的方式获得(1)式最小值时对应的 a , b , λ a,b,\lambda a,b,λ

不知道上面说的这些东西,你是否都理解,如果你觉得理解不了,你需要看一些关于非线性优化的资料,了解一些它的目的和思路!

下面我们就进入g2o优化的阶段,我们来看一下g2o是怎么处理这个问题的。在g2o中,对于优化问题统统都抽象成边和顶点来表示

  • 顶点:待优化的变量
  • 边:每一个误差项

上述表述,有一些抽象。对应曲线拟合这个例子来,那么顶点就是我们要求的变量 a , b , λ a,b,\lambda a,b,λ,边就是每一个测量对应的误差,更具体一点儿来说就是 y i − a exp ⁡ ( − λ x i + b ) y_i-a\exp(-\lambda x_i + b) yiaexp(λxi+b)的值。

那么这个曲线的拟合的例子中,就只有一个顶点,N条边!

只要是能把优化问题表示成顶点和边的形式,就可以非常容易的调用g2o来进行优化。

我们先来看一下g2o的类组成关系
在这里插入图片描述

图2

我们从SparseOptimizer这个类开始看,它需要一个OptimazationAlgorithm,g2o中提供了三种优化算法可以选择,GN、LM、DogLeg。而OptimazationAlgorithm需要一个Solver,同样的可以有多种求解器来选择。类似的可以看到SparseOptimizer就是一个HyperGraph,它由多个边和多个顶点组成。

总结起来,g2o的用法就是先构造优化算法,然后构造边和顶点,最后就可以进行优化的操作了。

下面咱们先来构造优化优化算法,代码如下:

	//为了代码简洁
	typedef g2o::BlockSolver<g2o::BlockSolverTraits<Eigen::Dynamic, Eigen::Dynamic> > MyBlockSolver;//block求解器
    typedef g2o::LinearSolverDense<MyBlockSolver::PoseMatrixType> MyLinearSolver;//线性求解器

    // 初始化一个SparseOptimizer对象
    g2o::SparseOptimizer optimizer;
    //初始化一个优化算法
    g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(
            g2o::make_unique<MyBlockSolver>(g2o::make_unique<MyLinearSolver>()));
    //将优化算法设置给SparseOptimizer
    optimizer.setAlgorithm(solver);

以上就是一个最简单的SparseOptimizer对象的构造方法,有了这个优化器,然后再添加边和顶点:
顶点

//根据图2的顶点构造关系,需要从基类中继承,然后对基类BaseVertex中的一些虚函数进行实现
class VertexParams : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:
	//Eigen自动内存对齐
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexParams() = default;//默认构造函数

    bool read(std::istream & /*is*/) override {
        cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;
        return false;
    }

    bool write(std::ostream & /*os*/) const override {
        cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;
        return false;
    }

    void setToOriginImpl() override {
        cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;
    }

	//设置顶点估计值的更新
    void oplusImpl(const double *update) override {
        Eigen::Vector3d::ConstMapType v(update);
        _estimate += v;
    }
};

//按照图2的流程,需要从基类中继承,由于我们这里顶点只有一个,所以就选用一元边,
//那么就从一元边的基类BaseUnaryEdge中继承,然后重写其中的一些重要虚函数
class EdgePointOnCurve : public g2o::BaseUnaryEdge<1, Eigen::Vector2d, VertexParams> {
public:
	//Eigen自动内存对齐
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    EdgePointOnCurve() = default;//默认构造函数,比手动效率更高

    bool read(std::istream & /*is*/) override {
        cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;
        return false;
    }

    bool write(std::ostream & /*os*/) const override {
        cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;
        return false;
    }
	
	//	误差的计算函数
    void computeError() override {
        const VertexParams *params = dynamic_cast<const VertexParams *>(vertex(0));
        const double &a = params->estimate()(0);
        const double &b = params->estimate()(1);
        const double &lambda = params->estimate()(2);
        double fval = a * exp(-lambda * measurement()(0)) + b;
        _error(0) = std::abs(fval - measurement()(1));
    }
};

以上就定义完成了,曲线拟合任务优化的顶点和边

然后就需要将顶点和边添加到优化器中:

添加顶点

    VertexParams *params = new VertexParams();
    params->setId(0);//设置顶点编号
	
	// 设置顶点的初始估计值,相当于a, b, $\lambda$的初始估计值都为1
    params->setEstimate(Eigen::Vector3d(1, 1, 1)); 
    optimizer.addVertex(params);//将顶点添加到优化器中

添加边

for (int i = 0; i < numPoints; ++i) {
		//新建一个边
        EdgePointOnCurve *e = new EdgePointOnCurve;
        e->setInformation(Eigen::Matrix<double, 1, 1>::Identity());//信息矩阵

        e->setVertex(0, params);//设置边对应的顶点
        e->setMeasurement(points[i]);//设置边的测量值

        optimizer.addEdge(e);
    }

然后就可以进行优化了,对应的代码如下:

    optimizer.initializeOptimization();//初始化整个优化器
    optimizer.optimize(maxIterations);//开始执行优化,迭代的次数为maxIterations

//输出最终优化得到的结果
cout << params->estimate()[0] << ", "
         << params->estimate()[1] << ", "
         << params->estimate()[2] << endl;

1.98896, 0.406936, 0.201035

该结果与我们设置的真值:2,0.4,0.2,相差无几,对应的拟合曲线如下:
在这里插入图片描述

图3

以上就是一个完整的g2o优化方法的使用流程。下面我们来做一些更细致的探讨!

鲁棒核函数

我们看一下这种情况,假设现在散点中一个很离谱的错误点,如图4
在这里插入图片描述

图4

由于右上角那个离谱的点,导致优化时将整个函数被拉偏了(可以对比图3)。

那么怎么解决这种问题呢?g2o中提供了鲁棒核函数来抑制某些误差特别大的点,拉偏整个优化结果。

鲁棒核函数不是g2o独有的,这是非线性优化方法中的一种常用手段!

使用方法如下:

		//构造一个Huber鲁棒核函数
        g2o::RobustKernelHuber* robust_kernel_huber = new g2o::RobustKernelHuber;
        robust_kernel_huber->setDelta(0.3);//设置delta的大小。注意这个要根据实际的应用场景去尝试,然后选择合适的大小
        e->setRobustKernel(robust_kernel_huber);//向边中添加鲁棒核函数

g2o中提供了多种鲁棒核函数,你可以根据自己的需要进行选择。

加入鲁棒核函数之后,结果明显好转。
在这里插入图片描述

如果你不了解鲁棒核函数的作用,你需要查看一下资料去学习一下

信息矩阵
现在来考虑另一种情况,比方说在一次优化中,对于某一次测量,我们有十足的把握,它非常的准确,所以优化时我们希望对于这次测量给予更高的权重。
在这里插入图片描述
如上图,假设我们认为左上角那个异常点是一个比较正确的点(只是假设),我们希望拟合的曲线尽量往这个点偏移。那么我们就这可以设置这次测量边的权重更大。

代码如下:

e->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 10);

因为测量值的维度为1,所以信息矩阵也为1。如果我们把每一条边的信息矩阵都设置为一样,那么在优化时将认为所有边的优化权重是一样的,将不会对某一条边执行过多的优化!

对于那个异常点设置权重为别的点的10倍,则曲线会往右上角那个点靠。最终的结果如下图:
在这里插入图片描述

一般情况下,信息矩阵和鲁棒核函数都会一起使用!

完整代码

如果你觉得上面代码中很多细节难以理解,那你不必花太多时间去理解细节,先从整体上去理解g2o的用法,然后多尝试一些例子,你的疑惑就会迎刃而解了!

2.更复杂的应用

TODO

### 如何使用CMake配置和构建g2o #### 准备工作 为了成功配置和构建 g2o ,首先需要确保已经安装了必要的依赖项。可以通过以下命令来完成这些依赖包的安装: ```bash sudo apt-get install libeigen3-dev libsuitesparse-dev qt5-qmake libqglviewer-dev-qt5 ``` 这一步骤会下载并安装 Eigen3、SuiteSparse 和其他所需的开发工具以及 Qt5 的 QGLViewer 组件。 #### 获取源码 接着克隆 g2o 的官方仓到本地计算机上: ```bash git clone https://github.com/RainerKuemmerle/g2o.git cd g2o ``` 上述操作将会把最新的 g2o 源代码复制至当前目录下的 `g2o` 文件夹内[^3]。 #### 创建构建环境 进入 g2o 目录后创建一个新的子文件夹用于存放编译过程中产生的临时文件和其他输出物,并切换至此新建立的路径下执行后续指令: ```bash mkdir build && cd build ``` 此过程有助于保持原始源代码结构整洁不受干扰的同时也方便管理不同版本间的差异。 #### 配置项目 利用 CMake 工具来进行项目的初步设置,在终端输入如下命令启动配置流程: ```bash cmake .. ``` 这条语句告诉 CMake 在上级目录寻找根级别的 `CMakeLists.txt` 文件作为起点解析整个工程所需的信息;期间如果遇到任何错误提示,则需按照指示调整相应参数直至顺利完成为止。对于特定平台或自定义需求可能还需要额外指定某些选项,比如通过 `-DG2O_BUILD_APPS=OFF` 来关闭应用程序部分的构建等[^1]。 #### 编译与安装 一旦确认无误便可以直接调用 Make 命令开始实际编译工作: ```bash make -j4 ``` 这里指定了并发作业数为 4(可根据 CPU 核心数量适当增减),加快整体进度。最后一步则是将生成的目标文件正式部署到系统的标准位置以便日后正常使用: ```bash sudo make install ``` 以上就是完整的基于 CMake 构建 g2o 的方法介绍。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值