基底(Basis)是线性代数中的一个重要概念,用来描述向量空间的结构。简单来说,基底是一个向量空间中用于“表示其他向量”的一组特殊向量。这些向量具有两个关键性质:
1. 基底的定义
对于一个 n n n 维向量空间 V V V,基底是一组向量 { b 1 , b 2 , … , b n } \{b_1, b_2, \dots, b_n\} {b1,b2,…,bn},满足以下条件:
- 线性无关:任意一个基向量不能由其他基向量通过线性组合得到。
c 1 b 1 + c 2 b 2 + ⋯ + c n b n = 0 ⟹ c 1 = c 2 = ⋯ = c n = 0 c_1 b_1 + c_2 b_2 + \cdots + c_n b_n = 0 \implies c_1 = c_2 = \cdots = c_n = 0 c1b1+c2b2+⋯+cnbn=0⟹c1=c2=⋯=cn=0 - 生成整个空间:通过基底向量的线性组合可以生成向量空间中的所有向量。
2. 基底的作用
-
构建向量:基底是向量空间的“构建块”,所有向量都可以用基底向量的线性组合表示。例如,对于 R 3 \mathbb{R}^3 R3 中的向量 v v v,如果基底为 { b 1 , b 2 , b 3 } \{b_1, b_2, b_3\} {b1,b2,b3},那么 v v v 可以表示为:
v = c 1 b 1 + c 2 b 2 + c 3 b 3 v = c_1 b_1 + c_2 b_2 + c_3 b_3 v=c1b1+c2b2+c3b3
其中 c 1 , c 2 , c 3 c_1, c_2, c_3 c1,c2,c3 是表示向量 v v v 在该基底下的坐标。 -
变换坐标系:基底决定了向量空间的坐标系,换基(更换基底)可以使问题更简单,例如将复杂的矩阵变换到对角矩阵的形式。
3. 基底的几何直观
- 在二维平面( R 2 \mathbb{R}^2 R2)中,标准基底是 e 1 = [ 1 , 0 ] e_1 = [1, 0] e1=[1,0] 和 e 2 = [ 0 , 1 ] e_2 = [0, 1] e2=[0,1],它们分别指向 x x x-轴和 y y y-轴。
- 在三维空间( R 3 \mathbb{R}^3 R3)中,标准基底是 e 1 = [ 1 , 0 , 0 ] e_1 = [1, 0, 0] e1=[1,0,0], e 2 = [ 0 , 1 , 0 ] e_2 = [0, 1, 0] e2=[0,1,0], 和 e 3 = [ 0 , 0 , 1 ] e_3 = [0, 0, 1] e3=[0,0,1],对应 x , y , z x, y, z x,y,z 三个方向。
这些标准基底定义了笛卡尔坐标系中的轴,但基底并不限于标准基底。例如,任意一组线性无关的向量(不平行)都可以作为基底。
4. 基底的数学性质
-
基底的个数:
- 对于一个 n n n 维向量空间,基底总是有 n n n 个向量。
- 例如,在 R 2 \mathbb{R}^2 R2 中,基底总是由两个向量组成。
-
基向量的线性组合:
- 基底向量的任意线性组合可以覆盖整个向量空间。例如,对于二维空间中的任意向量
v
=
[
x
,
y
]
v = [x, y]
v=[x,y],可以写成:
v = x ⋅ e 1 + y ⋅ e 2 v = x \cdot e_1 + y \cdot e_2 v=x⋅e1+y⋅e2
- 基底向量的任意线性组合可以覆盖整个向量空间。例如,对于二维空间中的任意向量
v
=
[
x
,
y
]
v = [x, y]
v=[x,y],可以写成:
-
正交基底:
- 如果基底向量两两正交(内积为 0),则称为正交基底,计算和表示会更简单。
-
标准基底:
- 如果基底向量的长度为 1,且两两正交,则称为标准基底(如单位向量)。
5. 举例说明
例 1:二维空间中的基底
- 在
R
2
\mathbb{R}^2
R2 中,标准基底是:
e 1 = [ 1 0 ] , e 2 = [ 0 1 ] e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e1=[10],e2=[01]
任意向量 v ∈ R 2 v \in \mathbb{R}^2 v∈R2,如 v = [ 3 2 ] v = \begin{bmatrix} 3 \\ 2 \end{bmatrix} v=[32],可以写成:
v = 3 e 1 + 2 e 2 v = 3e_1 + 2e_2 v=3e1+2e2
例 2:二维空间中的非标准基底
-
b 1 = [ 1 1 ] , b 2 = [ 1 − 1 ] b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} b1=[11],b2=[1−1]
是 R 2 \mathbb{R}^2 R2 的另一组基底。对于向量 v = [ 3 2 ] v = \begin{bmatrix} 3 \\ 2 \end{bmatrix} v=[32],可以用线性组合:
v = 2 b 1 + 1 b 2 v = 2 b_1 + 1 b_2 v=2b1+1b2
例 3:三维空间中的基底
- 在
R
3
\mathbb{R}^3
R3 中,标准基底为:
e 1 = [ 1 0 0 ] , e 2 = [ 0 1 0 ] , e 3 = [ 0 0 1 ] e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} e1= 100 ,e2= 010 ,e3= 001
任意向量 v ∈ R 3 v \in \mathbb{R}^3 v∈R3 都可以写成:
v = x ⋅ e 1 + y ⋅ e 2 + z ⋅ e 3 v = x \cdot e_1 + y \cdot e_2 + z \cdot e_3 v=x⋅e1+y⋅e2+z⋅e3
6. 基底的重要性
-
特征值分解与基底:
- 在特征值分解中,特征向量可以看作矩阵作用下的“新基底”,矩阵 W W W 的列向量就是这些特征向量。
- 分解形式 A = W Λ W − 1 A = W \Lambda W^{-1} A=WΛW−1 表示在特征向量基底下,矩阵变换被简化为对角矩阵 Λ \Lambda Λ。
-
奇异值分解与基底:
- 奇异值分解中的 U U U 和 V V V 分别表示行空间和列空间的基底。
-
空间理解:
- 基底帮助我们理解向量空间的维度、方向以及变换后的表示。