信号与系统(4)- 卷积积分求解线性系统的零状态响应
上一篇中阐述了如何求解系统的零输入响应,并且分辨了零输入响应和自然响应的求解区别。这一部分将阐述系统的零状态响应,即初始状态为零,仅由激励产生的响应。 掌握零状态响应的求解方法之后,即可求得系统的全响应,由此便完成了系统的时域分析。
传统求解微分方程的方法对求解零状态响应而言,主要困难时对特解的形式难以确定,因为往往系统的输入信号(激励信号)比较复杂,为解决这个问题,引入了卷积法对零状态响应进行求解。
1. 零状态响应求解的基本思路
首先,求解零状态响应最复杂的部分是根据激励信号对特解形式的确定。往往输入信号不会是如指数信号,正弦信号等基础信号,而是相对复杂的信号。因为求解的系统是线性系统,根据线性系统的叠加性和齐次性,如果可以将这种复杂信号分解为基础信号,并且每个基础信号的响应很容易确定,最后再将每个基础信号的响应进行相加,即可求得系统的零状态响应。
根据系统的齐次性和叠加性,即:
-
若 e ( t ) → r ( t ) e(t) \rightarrow r(t) e(t)→r(t)表示系统在激励信号 e ( t ) e(t) e(t)作用下的响应为 r ( t ) r(t) r(t),若激励变为 k e ( t ) ke(t) ke(t),则 k e ( t ) → k r ( t ) ke(t) \rightarrow kr(t) ke(t)→kr(t),说明系统具有齐次性。也就是说,输出信号和输入信号成比例上升或下降的特性。
-
若 e 1 ( t ) → r 1 ( t ) e_1(t) \rightarrow r_1(t) e1(t)→r1(t), e 2 ( t ) → r 2 ( t ) e_2(t) \rightarrow r_2(t) e2(t)→r2(t),若 e 1 ( t ) + e 2 ( t ) = r 1 ( t ) + r 2 ( t ) e_1(t)+e_2(t)= r_1(t)+r_2(t) e1(t)+e2(t)=r1(t)+r2(t),则系统满足叠加性。也就是说,输入信号相加后进入系统,系统的响应是各输入信号响应的和,则系统具备叠加性。
求解零状态相应的基本思路可以是:
- 将任意信号分解为一系列标准统一的子信号的和;
- 求解线性系统对各个标准信号的响应;
- 将各个子信号的系统响应叠加,求得系统的因为激励而引起的信号
根据以上思路则产生了4个问题:
- 选取什么样的子信号?
- 如何将任意信号分解为子信号的和?
- 如何求系统对子信号的响应?
- 如何求最后的系统响应,即如何将子信号的响应进行叠加?
回答上述问题的过程,就是求解零状态响应的过程,后续将对上述问题逐一作答。
2. 如何选取子信号?
选取子信号应当具备一些条件:
- 完备性:任意函数,或大多数函数,可以分解为该自信好的和。
- 简单性:系统对这个信号的响应比较容易求得。
- 相似性:不同的子信号之间应当具备一些联系,使得每个子信号求解时具备规律。
根据以上特点,这里引入两个函数:阶跃函数和冲击函数。
2.1 阶跃函数:
-
阶跃函数的形式:
u ( t ) = { 1 , t ≥ 0 0 , t < 0 u(t)=\left\{ \begin{array}{rcl} 1,\space \space \space t\geq0 \\ 0,\space \space \space t<0 \end{array} \right. u(t)={ 1, t≥00, t<0
在国内的约定中,也用 ε ( t ) \varepsilon(t) ε(t)表示。 -
性质
任意函数乘以 u ( t ) u(t) u(t)后, t < 0 t<0 t<0的部分等于零,并且函数成为有始信号,即:求零时刻之前,信号为0的信号。
2.2 冲激信号
- 冲激信号的形式:
δ ( t ) = { ∞ , t = 0 0 , t ≠ 0 \delta(t)=\left\{ \begin{array}{rlc} \infty, \space\space\space t=0\\ 0\space \space,\space\space\space t \neq 0 \end{array} \right. δ(t)={ ∞, t=00 , t=0
- 性质:
- 冲激函数可以定义为阶跃信号的导数,即: δ ( t ) = d d t u ( t ) \delta(t) = \frac{d}{dt}u(t) δ(t)=dtdu(t)
- 冲激函数和阶跃函数互为微分和积分: u ( t ) = ∫ − ∞ t δ ( τ ) d τ u(t)=\int_{-\infty}^{t}\delta(\tau)d\tau u(t)=∫−∞tδ(τ)dτ
- δ ( t ) = δ ( − t ) \delta(t)=\delta(-t) δ(t)=δ(−t),这是一个偶函数
- ∫ − ∞ + ∞ δ ( τ ) d τ = 1 \int_{-\infty}^{+\infty}\delta(\tau)d\tau=1 ∫−∞+∞δ(τ)dτ=1
- 抽样特性: ∫ − ∞ + ∞ f ( t ) δ ( t − t 0 ) d t = f ( t 0 ) \int_{-\infty}^{+\infty}f(t)\delta(t-t_0)dt=f(t_0) ∫−∞+∞f(t)δ(t−t0)dt=f(t0)
3. 如何将任意信号分解为子信号的和
约定 f ( t ) f(t) f(t)为待表示的函数, τ \tau τ为积分因子,则任意信号可以表示为一系列阶跃信号或一系列冲激信号的和。
-
表示为阶跃信号的和,积分下限中的 0 + 0^+ 0+表示在0之后的积分。
f ( t ) = f ( 0 ) u ( t ) + ∫ 0 + t f ‘ ( τ ) u ( t − τ ) f(t)=f(0)u(t)+\int_{0^+}^{t}f^`(\tau)u(t-\tau) f(t)=f(0)u(t)+∫0+tf‘(τ)u(t−τ)
事实上,电学系统中,很少存在突变,即不连续点,因此若 f ( t ) f(t) f(t)在 t = 0 t=0 t=0处连续可导,则:
f ( t ) = ∫ 0 t f ‘ ( τ ) u ( t − τ ) , f ( t ) 在 t = 0 处 连 续 可 导 f(t)=\int_{0}^{t}f^`(\tau)u(t-\tau), \space \space \space \space f(t)在t=0处连续可导 f(t)=∫0tf‘(τ)u(t−τ), f(t)在t=0处连续可导
上式便是通过阶跃信号对任意信号表示的方法。这种分析方法在六十年代应用比较广泛,那时冲激函数没有得到应用。由于它需要计算函数的导数,比较麻烦。 -
表示为冲激信号的和
f ( t ) = ∫ − ∞ + ∞ f ( τ ) δ ( t − τ ) d t f(t)=\int_{-\infty}^{+\infty}f(\tau)\delta(t-\tau)dt f(t)=∫−∞+∞f(τ)δ(t−τ)dt
上式中的积分上限可以换为t,下限换为0,即:
f ( t ) = ∫ 0 t f ( τ ) δ ( t − τ ) d t f(t)=\int_{0}^{t}f(\tau)\delta(t-\tau)dt f(t)=∫0tf(τ)δ(t−