max_steps
和 num_train_epochs
都是控制模型训练过程的重要参数,但它们的作用和含义是不同的。让我们逐一解释并对比它们的区别:
1. max_steps
(最大步骤数)
-
定义:
max_steps
控制训练过程中的最大步数,即训练过程不会超过指定的步数。 -
含义:一个“步数”就是一次模型参数更新的过程,它是通过对一个训练批次(batch)进行前向传播和反向传播来完成的。每进行一次这样的操作,算作一次“步数”。
例如,如果你的批次大小是 100,数据集有 1000 个样本,那么一个完整的训练 epoch 就包含 10 步(1000 / 100 = 10)。如果你设置
max_steps=30
,那么不管你设置了多少个 epoch,训练将在 30 步后自动停止。 -
使用场景:当你想要训练一个特定数量的步数时,无论模型是否完成了预定的 epoch 数量,都使用
max_steps
来控制训练过程。适用于以下情况:- 你不关心训练多少个 epoch,只关心训练的最大步数。
- 你希望在固定的训练步数后停止模型训练,特别是在训练集大小不确定时,或你只希望模型训练一段时间。
2. num_train_epochs
(训练轮数)
-
定义:
num_train_epochs
控制训练的总轮数(epoch),即训练集中的所有样本将被完整地迭代多少次。 -
含义:一个“轮次”(epoch)意味着模型使用整个训练数据集进行一次完整的学习和更新。假设你的训练数据集有 1000 个样本,批次大小为 100,那么一个 epoch 会包含 10 步(1000 / 100 = 10)。设置
num_train_epochs=2
就意味着数据集将被完整使用两遍。 -
使用场景:当你想让模型经过多个训练轮次来学习并优化时,使用
num_train_epochs
。适用于以下情况:- 你希望模型迭代训练整个数据集若干次。
- 数据集大小固定,且你希望控制模型总共进行多少次完整的学习。
3. max_steps
和 num_train_epochs
的关系与区别
-
主要区别:
max_steps
控制的是训练的总步数。训练不会超过指定的步数,而不管数据集的大小或训练轮数。num_train_epochs
控制的是训练的总轮数。训练将在整个数据集上进行完整的若干轮,直到达到指定的轮数。
-
如何共同工作:
- 如果你同时设置了
max_steps
和num_train_epochs
,训练过程会根据步数来停止,而不是轮次。例如:- 假设
max_steps=50
和num_train_epochs=5
,而你的数据集有 1000 个样本,批次大小为 100。那么每个 epoch 包含 10 步,总共有 50 步会被执行。即使你设置了 5 个 epoch,训练也会在 50 步后结束。
- 假设
- 如果你没有设置
max_steps
,那么训练会按照num_train_epochs
设置的轮数进行。例如:- 如果你设置了
num_train_epochs=5
,且数据集和批次大小没有变化,那么训练将进行 5 个完整的轮次。
- 如果你设置了
- 如果你同时设置了
-
max_steps
的优先级:- 如果你设置了
max_steps
,这个参数优先于num_train_epochs
。也就是说,训练将在达到max_steps
的步数后停止,即使还没有达到完整的num_train_epochs
轮数。
- 如果你设置了
4. 举例说明
假设你的数据集包含 5000 个样本,每个批次大小为 500:
- 每个 epoch 的步数:5000 / 500 = 10 步
- 如果你设置了:
num_train_epochs=2
,那么训练会进行 2 个完整的 epoch,总步数为 2 * 10 = 20 步。max_steps=15
,训练将在 15 步后停止,即使数据集未完整训练 2 个 epoch。- 如果你同时设置了
num_train_epochs=3
和max_steps=20
,训练将在 20 步后结束,因为max_steps
的优先级更高,尽管你设置了 3 个 epoch。
5. 总结
max_steps
:控制训练总共进行多少次步数,不受数据集和批次大小的影响。如果设置了它,训练将在达到指定步数后停止。num_train_epochs
:控制训练总共进行多少次完整的训练轮次。每个 epoch 会遍历整个数据集。- 当
max_steps
和num_train_epochs
同时设置时,训练会按照max_steps
进行限制,优先于轮数结束。
你可以根据训练的需求来选择使用 max_steps
或 num_train_epochs
,或者两者配合使用。如果只关心训练步数,可以使用 max_steps
,而如果希望训练完整的数据集多次,则使用 num_train_epochs
。
如果还是没懂可以继续阅读更详细的 ~~~
max_steps
是控制训练过程中最大训练步数的参数。它设定了训练过程中最多可以进行多少次 参数更新,即 多少次模型会通过数据进行学习。
详细解释:
-
训练步骤(steps):每进行一次参数更新(即一次梯度下降),就算作一次训练步骤。每次训练步骤都会根据一个 批次(batch) 的数据进行计算和更新。
-
最大步骤(max_steps):
max_steps
的作用是强制训练不超过指定的步数。即使你没有指定训练轮数(num_train_epochs
),只要达到max_steps
设定的步数,训练就会停止。训练步数通常由训练数据集的大小和批次大小决定。
举个例子:
假设你有一个训练数据集,其中包含 50,000 个样本,每次训练使用的批次大小(batch_size
)是 500,这意味着每次训练会用 500 个样本来更新一次模型。
- 每个 epoch 的步数:如果你设置的训练轮数(
num_train_epochs
)是 10,那么总共的训练步数是50,000 / 500 = 100
步(即每个 epoch 有 100 次参数更新)。 - 训练总步数:在 10 个 epoch 的情况下,训练的总步数将是 100 步 × 10 = 1000 步。
假设你设置了 max_steps=1000
,那么不管你是否设置了 num_train_epochs=10
,一旦训练步数达到 1000 步,训练会立即停止。
不设置 num_train_epochs
,只设置 max_steps
:
- 如果你设置了
max_steps=10000
,但是没有设置num_train_epochs
,那么训练就会严格按照 10,000 步来控制训练的结束时间。- 例如,你的训练数据集有 50,000 个样本,每个批次(batch_size)包含 500 个样本,那么每个 epoch 就会有 100 步。
- 如果
max_steps=10000
,那么训练将进行 10000 步,等同于 训练 100 个 epoch(因为 10000 / 100 = 100)。 - 如果你在训练时设置了
max_steps=10000
,训练就会在经过 10,000 次参数更新后停止,而不管你实际设置的num_train_epochs
是多少。
举个更加直观的例子:
-
例子 1:
- 数据集:1000 个样本
- 批次大小(batch size):100
num_train_epochs
:2max_steps
:50
每次训练会用 100 个样本进行一次更新,训练完一个 epoch(1000 / 100 = 10 步),所以 2 个 epoch 总共需要 20 步。
但是,由于max_steps=50
,训练将在达到 50 步后自动停止,即使num_train_epochs
设置为 2。 -
例子 2:
- 数据集:1000 个样本
- 批次大小(batch size):100
num_train_epochs
:没有设置max_steps
:30
如果你没有设置
num_train_epochs
,但设置了max_steps=30
,那么训练将在 30 步后结束,不管数据集的大小或者每个 epoch 中的步数是多少。
总结:
max_steps
控制了训练的最大步数,它决定了训练在多少次参数更新后结束。- 如果你设置了
max_steps
,它会优先于num_train_epochs
,意味着即使你没有设置具体的轮次,训练也会在达到指定的最大步数后自动停止。 - 例如,如果
max_steps=10000
,不管你设置了多少个 epoch,训练会在 10,000 步后结束。