随机事件在一次随机试验中是否发生,事先无法预知,但是人们在实践中认识到,在相同的条件下进行大量重复试验,试验结果具有统计规律性,即随机事件在这种大量重复试验的条件下出现的机会是稳定的。于是,可以将随机事件的出现机会与一定的数值相对应。
频率
在相同的条件下重复进行
n
n
n次试验,随机事件
A
A
A发生的次数
n
A
n_A
nA称作频数,比值
n
A
/
n
{n_A}/{n}
nA/n称作随机事件
A
A
A的频率,记作
f
n
(
A
)
f_n(A)
fn(A),即:
f
n
(
A
)
=
n
A
n
f_n(A) = \frac{n_A}{n}
fn(A)=nnA
实践证明:相同条件下的大量重复试验中,事件 A A A的频率具有一定的稳定性。
解释
- 随机事件:在一次随机试验中是否发生的事先无法预知的现象。
- 频数:在 n n n次试验中,随机事件 A A A发生的次数 n A n_A nA。
- 频率:随机事件 A A A发生的次数 n A n_A nA与总试验次数 n n n的比值,即 f n ( A ) = n A n f_n(A) = \frac{n_A}{n} fn(A)=nnA。
- 稳定性:在相同的条件下进行大量重复试验时,随机事件 A A A的频率趋于稳定。
示例
假设抛一枚硬币 n n n次,记录正面朝上的次数 n A n_A nA。随着 n n n的增加,正面朝上的频率 f n ( A ) = n A n f_n(A) = \frac{n_A}{n} fn(A)=nnA会逐渐接近一个稳定的值,通常为 0.5(如果硬币是公平的)。
概率
在相同的条件下重复进行 n n n次试验,随机事件 A A A发生的频率 f n ( A ) f_n(A) fn(A)随着试验次数 n n n的增大而稳定地在某个常数 p p p附近摆动,则称 p p p为事件 A A A的概率,记为 P ( A ) P(A) P(A)。
随机事件 A A A发生的概率显然具有上述频率所具备的性质。这是利用频率的稳定性对随机事件概率的统计定义,实际应用中常用频率来估计概率,即当 n n n足够大时,有 P ( A ) ≈ f n ( A ) P(A) \approx f_n(A) P(A)≈fn(A)。
解释
- 随机事件:在一次随机试验中是否发生的事先无法预知的现象。
- 频率:随机事件 A A A在 n n n次试验中发生的次数 n A n_A nA与总试验次数 n n n的比值,即 f n ( A ) = n A n f_n(A) = \frac{n_A}{n} fn(A)=nnA。
- 概率:随着试验次数 n n n的增加,频率 f n ( A ) f_n(A) fn(A)稳定在一个常数 p p p附近,这个常数 p p p称为事件 A A A的概率,记为 P ( A ) P(A) P(A)。
- 统计定义:利用频率的稳定性来估计概率,即当 n n n足够大时, P ( A ) ≈ f n ( A ) P(A) \approx f_n(A) P(A)≈fn(A)。
示例
假设抛一枚硬币 n n n次,记录正面朝上的次数 n A n_A nA。随着 n n n的增加,正面朝上的频率 f n ( A ) = n A n f_n(A) = \frac{n_A}{n} fn(A)=nnA会逐渐接近一个稳定的值,通常为 0.5(如果硬币是公平的)。因此,可以认为正面朝上的概率 P ( A ) ≈ 0.5 P(A) \approx 0.5 P(A)≈0.5。