【2024最全最细LangChain教程-12】Agent智能体(一)

本文介绍了如何在Langchain中构建一个简单的Agent,包括网络搜索工具(如TavilySearch)和网页检索器,以及使用OpenAI和Chroma技术。作者通过实例展示了Agent的基本原理和实现方法,后续将探讨记忆功能的添加和不同类型的Agent设计。
摘要由CSDN通过智能技术生成

【2024最全最细Langchain教程-11】Langchain回调模块-CSDN博客

本节课B站视频:【2024最全最细】Langchain教程之Agent(一)_哔哩哔哩_bilibili        

        有很多教程把Agent称为“代理”,我觉得这个翻译太没意思了,一来和Proxy很容易混淆,二来一点都不酷。

        之所以把Agent翻译成智能体,是因为Agent可以(在LLM推理分析的帮助下)可以自己识别、选择和使用工具,这个就是智能体的表现。人之所以能走上进化的道路,一来是发明了语言,二来是学会了使用工具。就这两点来看,把目前的Agent称为智能体一点也不为过。

        我们来构造一个简单的Agent,以此了解Agent的原理和基本实现方法:

目录

1. 构造一个网络搜索工具、一个网页检索器工具

2. 开始构造一个简单的、无记忆的Agent


1. 构造一个网络搜索工具、一个网页检索器工具

        我们先去Tavily 这个网站进行注册,会给你一个试用账号,然后你要把他给你的那个key配置到系统环境里:

        这个API接口每个月有1000次免费的查询机会,我们做研究和学习足够了:

from langchain_community.tools.tavily_search import TavilySearchResults

search = TavilySearchResults(
    max_results = 1,
    verbose = True,
)

search.invoke("今天中国A股的表现如何,沪指和深指分别是多少?")

        有一个问题好像是我设置的max_result 和 verbose好像没有生效,给我的结果依然是两条查询结果,不知道为啥,verbose也没有生效,我没搞懂。不过没关系,我们先来看一下查询结果:

         然后我们来构造一个检索器Retriever:

import os

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings

loader = WebBaseLoader("https://docs.smith.langchain.com/overview")

docs = loader.load()
documents = RecursiveCharacterTextSplitter(
    chunk_size=1000, chunk_overlap=200
).split_documents(docs)

vector = Chroma.from_documents(
    documents, 
    OpenAIEmbeddings(
        openai_api_key = os.getenv("OPENAI_API_KEY"),
        base_url = os.getenv("OPENAI_BASE_URL")
    )
)
retriever = vector.as_retriever()

retriever.get_relevant_documents("how to upload a dataset")[0]

        这个retriever的作用,和我们之前写的一个案例类似,不熟悉的可以回过头去看看:【2024最全最细Lanchain教程-9】Langchain互联网查询-CSDN博客

        这里调用的加载器是 WebBaseLoader,可以在官网API库里找到这个loader的介绍:langchain_community.document_loaders.web_base.WebBaseLoader — 🦜🔗 LangChain 0.1.4

        可以看到,和我们之前的案例一样,也是用BeautifulSoup来进行内容提取的,只不过他的这个源码写的结构更清晰、对于异常的处理也更完善,时间足够的话值得去仔细研究一下。

        这个构造完了之后,需要把检索器工具再进行一下包装以供Agent调用,使用的是 create_retriever_tool 方法:

from langchain.tools.retriever import create_retriever_tool

retriever_tool = create_retriever_tool(
    retriever,
    "langsmith_search",
    # 这里相当于一个工具的使用说明,agent在选择工具时会检查这个说明
    "Search for information about LangSmith.For any questions about LangSmith, you must use this tool"
)

tools = [search,retriever_tool]

        注意输入参数的第三行str,是一个对于工具的说明,agent在选择工具时会检查这个说明,类似于一个prompt。最后一行代码,完成了两个工具的封装一个搜索一个检索:

tools = [search,retriever_tool]

2. 开始构造一个简单的、无记忆的Agent

        首先加载一个聊天模型包装器:

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    temperature=0,
    openai_api_key = os.getenv("OPENAI_API_KEY"),
    base_url = os.getenv("OPENAI_BASE_URL")
)

        可以到langsmith的hub里找别人已经写好的提示词,我这里就直接用别人写好的提示词了:

from langchain import hub

# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-functions-agent")

print(prompt.messages[0].prompt.template)

        然后构造一个agent和一个agent_executor:

from langchain.agents import create_openai_functions_agent, AgentExecutor

agent = create_openai_functions_agent(llm, tools, prompt)

agent_executor = AgentExecutor(agent = agent, tools = tools)

agent_executor.invoke({"input":"hello how are you?"})

        可以看到初步的输出结果:

        我们想要看一下Agent实现的一些中间过程,这里我们可以给agent_executor添加一个 verbose = True的属性,然后测试一下agent的工具使用能力:

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()

agent_executor = AgentExecutor(
    agent = agent, 
    tools = tools,
    verbose =True,
)

agent_executor.invoke({"input":"你能告诉我今天北京的天气如何么?"})

        这个查询比较失败,看来tavily目前没有查询中国天气的能力:

        我们来试一试其他的查询:

        这个表现还好点,不过给的是1月30号的数据,我们看看获取美国那边的数据会不会好点:

        给的数据也看不出来是不是最新的,存疑。我们来看看检索器工具好不好使:

        检索器工具还不错。

        下一篇,我们讨论一下如何给Agent添加记忆功能,并探索更多类型的Agent。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值