//求角度 及前后左右方位
public void checkTargetDirForMe(Transform target)
{
//xuqiTest: target.position = new Vector3(3, 0, 5);
Vector3 dir = target.position - transform.position; //位置差,方向
//方式1 点乘
//点积的计算方式为: a·b =| a |·| b | cos < a,b > 其中 | a | 和 | b | 表示向量的模 。
float dot = Vector3.Dot(transform.forward, dir.normalized);//点乘判断前后:dot >0在前,<0在后
float dot1 = Vector3.Dot(transform.right, dir.normalized);//点乘判断左右: dot1>0在右,<0在左
float angle = Mathf.Acos(Vector3.Dot(transform.forward.normalized, dir.normalized)) * Mathf.Rad2Deg;//通过点乘求出夹角
//方式2 叉乘
//叉乘满足右手准则 公式:模长|c|=|a||b|sin<a,b>
Vector3 cross = Vector3.Cross(transform.forward, dir.normalized);//叉乘判断左右:cross.y>0在左,<0在右
Vector3 cross1 = Vector3.Cross(transform.right, dir.normalized); //叉乘判断前后:cross.y>0在前,<0在后
angle = Mathf.Asin(Vector3.Distance(Vector3.zero, Vector3.Cross(transform.forward.normalized, dir.normalized))) * Mathf.Rad2Deg;
}
范例:
using UnityEngine;
using System.Collections;
public class VectorDotCross : MonoBehaviour {
// 关于点积
private void Dot()
{
/*
点积
点积的计算方式为: a·b=|a|·|b|cos<a,b> 其中|a|和|b|表示向量的模,
<a,b>表示两个向量的夹角。 通过点积判断当两个向量的方向向是否相同
(大致相同即两个向量的夹角在 90 度范围内)
两个向量的 点积 大于 0 则两个向量夹角小于 90 度, 否则 两个向量的
夹角大于 90 度,
*/
// 定义两个向量 a、b
Vector3 a = new Vector3(1, 1, 1);
Vector3 b = new Vector3(1, 5, 1);
// 计算 a、b 点积结果
float result = Vector3.Dot(a, b);
// 通过向量直接获取两个向量的夹角(默认为 角度), 此方法范围 [0 - 180]
float angle = Vector3.Angle(a, b);
// 下面获取夹角的方法,只是展示用法,太麻烦不必使用
// 通过向量点积获取向量夹角,需要注意,必须将向量转换为单位向量才行
// 计算 a、b 单位向量的点积
result = Vector3.Dot(a.normalized, b.normalized);
// 通过反余弦函数获取 向量 a、b 夹角(默认为 弧度)
float radians = Mathf.Acos(result);
// 将弧度转换为 角度
angle = radians * Mathf.Rad2Deg;
}
// 关于叉乘
private void Cross()
{
/*
叉积
叉积的定义: c = a x b 其中a,b,c均为向量。两个向量的叉积是向量, 向量的模为 |c|=|a||b|sin<a,b>
且 向量 c 垂直于 a、b, c 垂直于 a、b 组成的平面, a x b = - b x a;
*/
// 定义两个向量 a、b
Vector3 a = new Vector3(1, 1, 1);
Vector3 b = new Vector3(1, 5, 1);
//计算向量 a、b 的叉积,结果为 向量
Vector3 c = Vector3.Cross(a, b);
// 下面获取夹角的方法,只是展示用法,太麻烦不必使用
// 通过反正弦函数获取向量 a、b 夹角(默认为弧度)
float radians = Mathf.Asin(Vector3.Distance(Vector3.zero, Vector3.Cross(a.normalized, b.normalized)));
float angle = radians * Mathf.Rad2Deg;
// 判断顺时针、逆时针方向,是在 2D 平面内的,所以需指定一个平面,下面以X、Z轴组成的平面为例(忽略 Y 轴)
// 以 Y 轴为纵轴
// 在 X、Z 轴平面上,判断 b 在 a 的顺时针或者逆时针方向
if (c.y > 0)
{
// b 在 a 的顺时针方向
}
else if (c.y == 0)
{
// b 和 a 方向相同(平行)
}
else
{
// b 在 a 的逆时针方向
}
}
// 获取两个向量的夹角 Vector3.Angle 只能返回 [0, 180] 的值
// 如真实情况下向量 a 到 b 的夹角(80 度)则 b 到 a 的夹角是(-80)
// 通过 Dot、Cross 结合获取到 a 到 b, b 到 a 的不同夹角
private void GetAngle(Vector3 a, Vector3 b)
{
Vector3 c = Vector3.Cross(a, b);
float angle = Vector3.Angle(a, b);
// b 到 a 的夹角
float sign = Mathf.Sign(Vector3.Dot(c.normalized, Vector3.Cross(a.normalized, b.normalized)));
float signed_angle = angle * sign;
Debug.Log("b -> a :" + signed_angle);
// a 到 b 的夹角
sign = Mathf.Sign(Vector3.Dot(c.normalized, Vector3.Cross(b.normalized, a.normalized)));
signed_angle = angle * sign;
Debug.Log("a -> b :" + signed_angle);
}
}
Unity 四元数、欧拉角、轴角 之间的互相转换
using UnityEngine;
public class RotateTest : MonoBehaviour {
public Transform a;
public Transform b;
public Transform c;
void Start()
{
Quaternion q1 = new Quaternion(1,2,3,4);
Debug.Log("创建一个四元数:"+q1);//输出:(1.0, 2.0, 3.0, 4.0)
Vector3 eulerAngle = q1.eulerAngles;
Debug.Log("四元数转欧拉角:" + eulerAngle);//输出:(352.3, 47.7, 70.3)
Quaternion q2 = Quaternion.Euler(eulerAngle);
Debug.Log("欧拉角转四元数:" + q2);//输出:(-0.2, -0.4, -0.5, -0.7)
Vector3 axis; float angle;
q1.ToAngleAxis(out angle, out axis);
Debug.Log("四元数转轴向角,旋转角度:" + angle+"旋转轴:"+axis);//输出:旋转角度:86.17744旋转轴:(0.3, 0.5, 0.8)
Quaternion q3= Quaternion.AngleAxis(angle, axis);
Debug.Log("轴向角转四元数:"+q3);//输出:(0.2, 0.4, 0.5, 0.7)
//测试
a.rotation = q1;
b.rotation = q2;
c.rotation = q3; //结果:a,b,c的旋转相同,inspector面板里的Rotation都是(-7.662, 47.726, 70.346)
}
}