使用lap.lapjv实现线性分配(我主要用来作为匈牙利算法的实现)

本文介绍了如何利用lap.lapjv库实现线性分配问题的优化,通过给出的分数矩阵找到最佳的任务分配方案。通过两个代码示例展示了如何使用该算法,并解释了返回的c、x、y三个值的含义,展示了一个最小化总代价的分配策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用lap.lapjv实现线性分配(我主要用来作为匈牙利算法的实现)

lapjv算法是一种最佳任务分配方法,可以应用的地方很多。需要输入一个分数方阵,最终获得一列最佳分配数值。如 n 个数值,要实现其最佳的配对,那么配对就需要根据n*n的一个分数方阵来计算,以总体最小代价实现任务分配,每一个数值不会重复分配。这里不讨论如何构建分数矩阵。如下图,依据分数矩阵,以最小代价给每一个工人分配任务。
在这里插入图片描述
例1
以上工人分配显然不是最佳,那么最佳方式是怎么样的呢?下面用代码来看看:

>>> import lap
>>> from lap import lapjv
>>> import numpy as np
>>> a = np.array([[1,2,3,4],[2,4,6,8],[3,6,9,12],[4,8,12,16]])
>>> a
array([[ 1,  2,  3,  4],
       [ 2,  4,  6,  8],
       [ 3,  6,  9, 12],
       [ 4,  8, 12, 16]])
>>> c,x,y = lapjv(a)
>>> c
20.0
>>> x
array([3, 2, 1, 0])
>>> y
array([3, 2, 1, 0])

由此可以看出,最佳分配为:a-s,b-r,c-q,d-p, 总代价最小为20.

代码测试二:

>>> import lap
>>> from lap import lapjv
>>> import numpy as np
>>> a = np.array([[0.1,0.6,0.3],[0.2,0.1,0.6],[0.5,0.2,0.9]])
>>>
>>> c,x,y = lapjv(a)
>>> c
0.7
>>> x
array([2, 0, 1])
>>> y
array([1, 2, 0])
>>>

这里返回三个值:
c: 赋值的代价,如果return_cost为False,则不返回。
x: 一个大小为n的数组,用于指定每一行被分配到哪一列。
y: 一个大小为n的数组,用于指定每列被分配到哪一行。

在这里插入图片描述
行索引分配[2,0,1]: cost = 0.3+0.2 +0.2 = 0.7

列索引分配 [1,2,0]:cost = 0.2 + 0.2 +0.3 =0.7

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值