FID(Fréchet Inception Distance)是一种用于评估生成模型,尤其是在图像生成任务中,生成图像的质量和多样性的指标。它通过比较生成图像与真实图像在特定空间内的分布来工作。这个特定的空间通常是通过预训练的Inception网络的某一层来定义的。FID的计算公式如下:
-
对于生成图像集和真实图像集,分别通过Inception网络(通常是Inception V3模型)计算它们的特征表示。这一步骤会得到每个图像集的特征向量。
-
计算每个集合的特征向量的均值和协方差矩阵。设生成图像的特征向量的均值和协方差矩阵分别为 μ g \mu_g μg 和 Σ g \Sigma_g Σg,真实图像的特征向量的均值和协方差矩阵分别为 μ r \mu_r μr 和 Σ r \Sigma_r Σr。
-
使用下面的公式计算FID分数: