【基础知识】FID(Fréchet Inception Distance)公式及解释

FID(Fréchet Inception Distance)是一种用于评估生成模型,尤其是在图像生成任务中,生成图像的质量和多样性的指标。它通过比较生成图像与真实图像在特定空间内的分布来工作。这个特定的空间通常是通过预训练的Inception网络的某一层来定义的。FID的计算公式如下:

  1. 对于生成图像集和真实图像集,分别通过Inception网络(通常是Inception V3模型)计算它们的特征表示。这一步骤会得到每个图像集的特征向量。

  2. 计算每个集合的特征向量的均值和协方差矩阵。设生成图像的特征向量的均值和协方差矩阵分别为 μ g \mu_g μg Σ g \Sigma_g Σg,真实图像的特征向量的均值和协方差矩阵分别为 μ r \mu_r μr Σ r \Sigma_r Σr

  3. 使用下面的公式计算FID分数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值