O-Mamba: O-shape State-Space Model for Underwater Image Enhancement
Underwater image enhancement (UIE) face significant challenges due to complex underwater lighting conditions. Recently, mamba-based methods have achieved promising results in image enhancement tasks. However, these methods commonly rely on Vmamba, which focuses only on spatial information modeling and struggles to deal with the cross-color channel dependency problem in underwater images caused by the differential attenuation of light wavelengths, limiting the effective use of deep networks. In this paper, we propose a novel UIE framework called O-mamba. O-mamba employs an O-shaped dual-branch network to separately model spatial and cross-channel information, utilizing the efficient global receptive field of state-space models optimized for underwater images. To enhance information interaction between the two branches and effectively utilize multi-scale information, we design a Multi-scale Bimutual Promotion Module. This branch includes MS-MoE for fusing multi-scale information within branches, Mutual Promotion module for interaction between spatial and channel information across branches, and Cyclic Multi-scale optimization strategy to maximize the use of multi-scale information. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) results.
由于复杂的水下光照条件,水下图像增强(UIE)面临着重大挑战。最近,基于Mamba的方法在图像增强任务中取得了显著成果。然而,这些方法通常依赖于Vmamba,它仅侧重于空间信息建模,并难以处理由于光波长差异衰减导致的水下图像跨颜色通道依赖性问题,从而限制了深度网络的有效利用。
本文提出了一种新颖的水下图像增强框架——O-mamba。O-mamba采用O形双分支网络分别建模空间和跨通道信息,利用针对水下图像优化的状态空间模型的有效全局感受野。为了增强两个分支之间的信息交互并有效利用多尺度信息,本文设计了一个多尺度双向促进模块。该模块包括MS-MoE(用于融合分支内的多尺度信息)、双向促进模块(用于跨分支的空间和通道信息交互)以及循环多尺度优化策略(以最大化利用多尺度信息)。大量实验表明,本文的方法达到了