1.透视投影
在计算机三维图像中,投影可以看作是一种将三维坐标变换为二维坐标的方法,透视投影由于和人的视觉系统相似,多用于在二维平面中对三维世界的呈现。
参考:http://blog.csdn.net/wong_judy/article/details/6283019
2.perspectiveM(m, offset, fovy, aspect, zNear, zFar)方法
2.1仅支持android4.0以上版本,如果要在之前版本使用该效果,可以自主编写perspectiveM方法。
2.2参数介绍
m:存储透视投影矩阵
offset:偏移量,一般为0
fovy:视野角度,小于180度,角度越小视野越窄
zNear:到近处平面距离,必须为正值。比如,如果此值为1,那近处平面就位于一个z值为-1处
zFar:到远处平面的距离,必须为正值且大于zNear值
3.齐次坐标(x,y,z,w)
齐次坐标能体现三维空间的距离感,即透视除法。
参考:http://www.cnblogs.com/shihira/p/4825807.html
比如A(-1,-1,0,1)与B(-1,-1,0,2)实际是同一个点,但在屏幕显示时,视觉感受就是B在A的后面,即A(-1,-1,0)与B(-1/2,-1,/2,0),可以简单理解w是体现该点距离摄像头(眼睛)的值
4.模型矩阵
模型矩阵用来存储移动、旋转、缩放物体的矩阵数据
//模型矩阵
private final float[] modelMatrix = new float[16];
//利用模型矩阵移动和旋转物体
setIdentityM(modelMatrix, 0);
translateM(modelMatrix, 0, 0f, 0f, -2.5f);
rotateM(modelMatrix, 0, -60f, 1f, 0f, 0f);
5.先进行透视投影矩阵与模型矩阵运算,减少给顶点着色器的传值
//渲染器的onSurfaceChanged方法
//创建透视投影矩阵
perspectiveM(projectionMatrix, 0, 45, (float)width/(float)height, 1f, 10f);
//利用模型矩阵移动和旋转物体
setIdentityM(modelMatrix, 0);
translateM(modelMatrix, 0, 0f, 0f, -2.5f);
rotateM(modelMatrix, 0, -60f, 1f, 0f, 0f);
//透视投影矩阵与模型矩阵相乘赋值给projectionMatrix
final float[] temp = new float[16];
multiplyMM(temp, 0, projectionMatrix, 0, modelMatrix, 0);
System.arraycopy(temp, 0, projectionMatrix, 0, temp.length);
//渲染器的onDrawFrame方法
// 清除屏幕颜色
glClear(GL_COLOR_BUFFER_BIT);
//投影矩阵传值给着色器
glUniformMatrix4fv(uMatrixLocation, 1, false, projectionMatrix, 0);
6.总结:注意三维空间的坐标,在此例
摄像头坐标为(0,0,0),透视投影模式,近处平面z为-1,远处平面z为-10;
物体坐标为(0,0,0),向z轴移动-2,绕x轴旋转-60度。
7.源码:https://github.com/HQlin/ShaderOpenGL/commits/master