复变函数论4-解析函数的幂级数表示法1-3-解析函数项级数3:Montel/蒙泰尔定理【设复函数序列在区域D内解析并且闭一致有界➜存在子序列在D内内闭一致收敛且该子序列的极限函数在区域D内解析】

本文介绍了复变函数论中的蒙泰尔定理,阐述了当复函数序列在区域内解析且内闭一致有界时,存在子序列内闭一致收敛,并且其极限函数在该区域解析。通过引理证明了序列在有界闭集上的等度连续性,进而推导出蒙泰尔定理。
摘要由CSDN通过智能技术生成

下面我们来介绍蒙泰尔 (Montel)定理.

定理 4.10 (蒙泰尔定理)

设复函数序列 { f n ( z ) } n = 1 ∞ \left\{f_{n}(z)\right\}_{n=1}^{\infty} { fn(z)}n=1 在区域 D D D 内解析, 并且在 D D D内内闭一致有界, 则 { f n ( z ) } n = 1 ∞ \left\{f_{n}(z)\right\}_{n=1}^{\infty} { fn(z)}n=1存在子序列 { f n t ( z ) } \left\{f_{n_{t}}(z)\right\} { fnt(z)} D D D 内内闭一致收敛,并且这个子序列的极限函数在区域 D D D 内解析.

为证明解析函数列的蒙泰尔定理, 需要下面的引理:

引理

设复函数序列 { f n ( z ) } \left\{f_{n}(z)\right\} { fn(z)} 在区域 D D D 内解析, 在 D D D内内闭一致有界, 并且在 D D D的一个秱密子集 Ω \Omega Ω 上收敛,则序列 { f n ( z ) } \left\{f_{n}(z)\right\} { fn(z)} D D D 内内闭一致收敛.


Π \Pi Π D D D 内任一有界闭集, ρ \rho ρ Π \Pi Π D D D 的边界之距离,即 ρ = ρ ( Π , t i a l D ) \rho=\rho(\Pi, tial D) ρ=ρ(Π,tialD). 又设 E = { z ∣   ρ ( z , Π ) ⩽ ρ 2 } E=\left\{z \left\lvert\, \rho(z, \Pi) \leqslant \cfrac{\rho}{2}\right.\right\} E={ z ρ(z,Π)2ρ},显然, Π ⊂ E ⊂ D \Pi \subset E \subset D ΠED.

由引理条件知, 序列 { f n ( z ) } \left\{f_{n}(z)\right\} { fn(z)} E E E 上一致有界, 即在 E E E ∣ f n ( z ) ∣ ⩽ M \left|f_{n}(z)\right| \leqslant M fn(z)M. 设点 z 1 , z 2 ∈ Π z_{1}, z_{2} \in \Pi z1,z2Π ∣ z 1 − z 2 ∣ < ρ 4 \left|z_{1}-z_{2}\right|<\cfrac{\rho}{4} z1z2<4ρ; 用 Γ \Gamma Γ 表示圆周 ∣ ξ − z 1 ∣ = ρ 2 \left|\xi-z_{1}\right|=\cfrac{\rho}{2} ξz1=2ρ. 显然 Γ \Gamma Γ 的内部包含在 E E E中.由柯西积分公式得到

∣ f n ( z 1 ) − f n ( z 2 ) ∣ = ∣ 1 2 π i ∫ Γ f ( ξ ) ξ − z 1   d ξ − 1 2 π i ∫ Γ f ( ξ ) ξ − z 2   d ξ ∣ = 1 2 π ∣ z 1 − z 2 ∣ ∣ ∫ Γ f ( ξ ) ( ξ − z 1 ) ( ξ − z 2 ) d ξ ∣ . \begin{aligned} \left|f_{n}\left(z_{1}\right)-f_{n}\left(z_{2}\right)\right| & =\left|\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \cfrac{f(\xi)}{\xi-z_{1}} \mathrm{~d} \xi-\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \cfrac{f(\xi)}{\xi-z_{2}} \mathrm{~d} \xi\right| \\ & =\cfrac{1}{2 \pi}\left|z_{1}-z_{2}\right|\left|\int_{\Gamma} \cfrac{f(\xi)}{\left(\xi-z_{1}\right)\left(\xi-z_{2}\right)} \mathrm{d} \xi\right| . \end{aligned} fn(z1)fn(z2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值