使用scipy.optimize.minimize求解非线性规划

scipy.optimize.minimize是用于求解非线性规划问题的工具,支持多种求解方法,如BFGS, SLSQP等。函数需要提供目标函数、初始值和可能的约束条件,可以指定计算梯度和Hessian的方式,并能处理变量边界。通过实例展示了如何应用该函数进行优化计算。" 133315743,19974110,FANUC机器人SRVO DCAL报警解决与嵌入式应用实践,"['机器人', '嵌入式开发', '工业自动化', '伺服驱动器', '故障排查']

scipy.optimize.minimize.

scipy.optimize.minimize用于求解非线性规划问题,将问题表述为若干个变量的标量函数的最小值,其函数接口定义如下:

scipy.optimize.minimize(fun, x0, args=(), method=None,
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员光剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值