Ngram模型在机器翻译中的应用

本文介绍了N-gram模型在机器翻译中的应用,包括基本概念如N元语法、N元语法模型和N-gram语言模型,以及核心算法原理、平滑技术、Python实现和具体代码实例。N-gram模型在统计机器翻译和神经网络机器翻译方法中起到关键作用,用于计算词序列概率,解决机器翻译中的语言建模问题。

作者:禅与计算机程序设计艺术

N-gram模型是一种统计语言模型,它可以用来计算一个词序列出现的概率。最早由Kneser及Young提出,后来Dahl等人将其扩展到生成语言模型中,得到了条件N-gram模型。条件N-gram模型是一个条件概率分布,用以描述给定一组前缀之后出现某个词的概率。比如对于语句"I love you",它的条件概率分布可以表示成:P(wi∣wi−1,wi−2,...,wi−n+1)P(w_i|w_{i-1}, w_{i-2},..., w_{i-n+1})P(w

评论 8
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员光剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值