作者:禅与计算机程序设计艺术
1.简介
由于近年来人工智能技术飞速发展,使得自然语言处理、计算机视觉等领域取得重大突破,在各行各业都引起了极大的关注。而随着人工智能的应用范围越来越广泛,越来越多的数据被收集到,同时也产生了大量的个人信息。而对于这些数据来说,如何对其进行安全、合规地管理一直是个重要课题。
传统上,数据管理通常由数据管理员负责,其主要工作包括数据分类、数据标记、数据加密、数据过滤、数据归档等。如今互联网的普及,数据量呈爆炸性增长,如何高效且准确地管理这些数据成为一个新的难题。为了应对这一挑战,越来越多的人提出了“数据隐私保护”相关的理念,并尝试开发新的技术手段来保障个人数据的安全。
机器学习(Machine Learning)算法是解决数据管理和隐私保护问题的利器。它可以自动地从海量数据中找寻隐藏的模式或结构,并用算法模型预测新的、未见过的输入数据。所以,通过掌握机器学习算法,能够帮助企业降低成本、改善产品质量、提升服务水平,还可实现对用户隐私信息的全方位管理。
本文将介绍常用的机器学习算法,并介绍它们在人工智能领域的应用。文章共分七章,分别介绍:
- 第一章 绪论
- 第二章 概率图模型
- 第三章 深度学习
- 第四章 模型压缩
- 第五章 规则学习
- 第六章 强化学习
- 第七章 在线学习与