Keras深度学习库用法示例——Keras框架基本使用

本文是Keras深度学习库的使用教程,涵盖了Keras的安装、基本模型搭建、数据加载与预处理、训练与验证、模型保存与加载、迁移学习和集成学习等内容。通过实例介绍了Sequential模型和Functional API的使用,以及如何进行数据预处理、模型训练和微调。同时,探讨了Keras在GPU加速、数据读取、模型保存等方面的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

1990年以来,深度学习得到了越来越多的关注。随着数据量、计算性能、机器学习模型复杂度等的提升,深度学习领域也逐渐变得火热起来。目前深度学习框架很多,比如TensorFlow、Caffe、Torch、PaddlePaddle等。而近几年比较流行的深度学习框架就是由Google开源的Keras。
2017年6月,Keras正式发布1.0版本,是第一个稳定的版本,支持Python 2.7 和 Python 3.6+,具有易于上手、快速开发、可扩展性强、模型模块化等特点。2019年3月Keras经历了一个重要的升级——2.3.1版,新增了对TensorFlow 2.x 的支持。在这个版本里,Keras重构了底层实现,降低了TensorFlow 1.x版本和2.x版本之间的差异,使得Keras更加符合Python的理念。
在这篇文章中,我将通过一些代码实例,介绍Keras的基本使用方法,从入门到精通。希望能够帮助大家快速入门并掌握Keras的使用技巧。
本文主要内容包括:Keras概述、Keras安装及环境搭建、Keras的基本模型搭建、Keras的数据加载和预处理、Keras的训练与验证、Keras的保存和加载、Keras的迁移学习、Keras的集成学习等。

2.Keras概述

Keras是一个高级神经网络API,

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值