——理解LBFGS优化算法的局限性与改进方向

L-BFGS是最优化算法之一,适用于机器学习和数据挖掘任务。算法具有线性收敛性、弱局部近似、稀疏海森矩阵表示和自适应步长等特点。然而,其局限性包括缺乏模型预测功能、对噪声敏感、需要存储海森矩阵、处理不可微分函数困难以及对参数变化的目标函数求解挑战。改进方向涉及增加预测功能、提升鲁棒性、改善海森矩阵连续性和平滑策略,以及节省存储空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

目前很多机器学习、数据挖掘任务都依赖于强大的优化算法,而最流行的优化算法之一就是最优化算法中的L-BFGS算法(Limited memory BFGS)。在此文章中,我们将通过对其历史背景、基本原理、数学公式和具体实现进行阐述,讨论L-BFGS优化算法的优缺点及局限性,并提出改进方向。

1.1 L-BFGS算法简介

(1)算法历史背景

L-BFGS算法(Limited memory BFGS),中文名称为“内存受限的Broyden-Fletcher-Goldfarb-Shanno”算法。它是一种有限差值法(quasi-Newton method),是由伽莫夫、费舍尔、鲁多克斯和森博格等人开发出的一种对海森矩阵(Hessian matrix)进行减小(approximate)的方法。

L-BFGS算法的命名源自它的三个创始人的姓氏首字母,即伽莫夫(Roger Felberg)、费舍尔(Richard Shiefs)和鲁多克斯(Robert Lowe)三位都是牛津大学的教授。当时为了找到更加有效的海森矩阵求解方法,他们联合进行研究࿰

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值