作者:禅与计算机程序设计艺术
1.背景介绍
卷积神经网络(CNN)在图像分类、目标检测、人脸识别等领域已经取得了不俗的成果。近年来,随着计算能力的飞速提升和存储器的扩充,GPU加速也成为人们关注的焦点。越来越多的研究者们正在将CNN移植到GPU上,从而实现更快的模型训练和推理。相比于传统CPU上的算法,GPU上的CNN算法具有更高的计算性能和更低的延迟。本文基于CUDA编程语言来阐述基于GPU的CNN算法架构,并详细讨论了具体操作步骤以及数学模型公式的详细讲解,最后给出一些示例代码。
2.核心概念与联系
2.1 什么是卷积神经网络
卷积神经网络(Convolutional Neural Network, CNN),是一种特殊类型的多层结构神经网络,其特点是卷积层和池化层的堆叠。网络由多个卷积层和池化层组成,其中每层又包括多个特征图(feature map)。
卷积层:卷积层通过对输入图像进行卷积操作获取感兴趣区域内的特征,每个特征都是由原始图像中某些局部区域激活而形成。通过将各个层的特征结合起来可以获得更丰富的表示,使得网络能够从全局角度理解图像。
池化层:池化层对输入图像进行下采样操作,即通过过滤器(filter)对输入图像进行滑动窗口操作,从而降低特征图的分辨率。池化层可以帮助网络减少参数数量并防止过拟合。