知识图谱在新闻领域的应用:事件挖掘与舆情分析

本文介绍了知识图谱在新闻领域的应用,包括事件挖掘和舆情分析。核心算法涉及实体识别、关系抽取和实体链接,利用深度学习模型如BiLSTM-CRF、CNN和BERT。知识图谱在新闻推荐、摘要和检索中有广泛的应用,同时提出了未来发展的挑战,如构建效率、质量提升和领域知识融合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

随着互联网的发展,新闻信息的获取和传播方式发生了巨大的变化。每天,大量的新闻信息通过各种媒体平台传播出去,这些信息中包含了丰富的事件、人物、地点等信息。如何从这些海量的新闻信息中挖掘出有价值的信息,成为了新闻领域的一个重要研究方向。知识图谱作为一种能够表示和存储大量信息的技术,被广泛应用在新闻领域的事件挖掘和舆情分析中。

2.核心概念与联系

知识图谱是一种新型的数据结构,它以图的形式表示和存储信息。在知识图谱中,节点代表实体,边代表实体之间的关系。通过知识图谱,我们可以清晰地看到各个实体之间的关系,从而更好地理解和分析信息。

事件挖掘是从文本中提取事件信息的过程,它包括事件的发生时间、地点、参与者等信息。在新闻领域,事件挖掘可以帮助我们理解新闻的主要内容,从而更好地理解和分析新闻。

舆情分析是对公众舆论的分析,它包括对公众的情绪、观点、态度等的分析。在新闻领域,舆情分析可以帮助我们理解公众对新闻的反应,从而更好地理解和分析新闻。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

知识图谱的构建主要包括实体识别、关系抽取和实体链接三个步骤。

实体识别是从文本中识别出实体的过程,常用的方法有基于规则的方法、基于统计的方法和基于深度学习的方法。其中,基于深度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值