1.背景介绍
在数字广告领域,实时竞价(Real-Time Bidding,RTB)和广告投放优化是两个关键的问题。实时竞价是指在一个广告交易平台上,广告主通过竞价的方式,实时购买每一次的广告展示机会。广告投放优化则是指如何根据用户的行为和属性,以及广告的特性,选择最合适的广告进行展示,以达到最大化的广告效果。这两个问题的解决,对于广告主来说,可以提高广告的投放效果,对于广告平台来说,可以提高广告的收益。
近年来,随着人工智能技术的发展,特别是强化学习的发展,为解决这两个问题提供了新的思路。强化学习是一种通过与环境的交互,学习如何做出最优决策的机器学习方法。在实时竞价和广告投放优化问题中,强化学习可以通过不断的试错,学习到最优的竞价策略和广告投放策略。
2.核心概念与联系
在介绍强化学习在实时竞价和广告投放优化中的应用之前,我们首先需要理解一些核心的概念。
2.1 强化学习
强化学习是一种通过与环境的交互,学习如何做出最优决策的机器学习方法。在强化学习中,有两个核心的概念:状态(state)和动作(action)。状态描述了环境的当前情况,动作则是在给定的状态下,