文章目录
AI大语言模型预训练数据准备:从原始数据到高质量语料库(1)
大规模语言模型的预训练需要海量的文本数据。如何从原始的网页、图书等非结构化数据中获取高质量的文本语料,是训练高性能语言模型的首要前提。本文将介绍一些常用的语料库构建方法和工具,分享构建高质量预训练语料库的经验。
1.背景介绍
1.1 预训练语料库对大语言模型的重要性
预训练语料库的质量直接影响语言模型的性能。一个理想的预训练语料库应该具备以下特点:
-
规模大:拥有足够的数据量,通常在百GB到TB量级,可以全面覆盖语言的各种现象。
-
领域广泛:包含不同体裁、主题、风格的文本,有助于模型学习语言的一般性规律。
-
噪声低:数据的错误、重复、冗余等噪声尽量少,保证语料的可靠性。
-
富任务相关性:与下游任务的领域、风格等特点接近,使模型能更好地适应具体任务。
因此,优质的预训练语料库是大规模语言模型取得SOTA效果的基础。
1.2 预训练语料来源概述
常见的预训练语料来源包括:
-
网页:数量庞大、覆盖面广,但质量参差不齐,需要大量的清洗工作。
-
图书:体裁丰富、文本连贯,但版权问题需要注意。
-
百科:知识密度高、噪音少,但覆盖面