AI大语言模型预训练数据准备:从原始数据到高质量语料库

本文探讨了构建大规模语言模型预训练语料库的重要性,强调了数据质量、来源、版权和知识增强的关键点。介绍了语料获取、清洗、分析和增广的步骤,以及文本相似度计算、TF-IDF权重和可读性评估的数学模型。通过Python实践展示了从Wikipedia数据构建预训练语料库的过程,强调了实际应用场景和未来发展趋势,并解答了预训练语料库与下游任务数据的区别等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

AI大语言模型预训练数据准备:从原始数据到高质量语料库(1)

大规模语言模型的预训练需要海量的文本数据。如何从原始的网页、图书等非结构化数据中获取高质量的文本语料,是训练高性能语言模型的首要前提。本文将介绍一些常用的语料库构建方法和工具,分享构建高质量预训练语料库的经验。

1.背景介绍

1.1 预训练语料库对大语言模型的重要性

预训练语料库的质量直接影响语言模型的性能。一个理想的预训练语料库应该具备以下特点:

  1. 规模大:拥有足够的数据量,通常在百GB到TB量级,可以全面覆盖语言的各种现象。

  2. 领域广泛:包含不同体裁、主题、风格的文本,有助于模型学习语言的一般性规律。

  3. 噪声低:数据的错误、重复、冗余等噪声尽量少,保证语料的可靠性。

  4. 富任务相关性:与下游任务的领域、风格等特点接近,使模型能更好地适应具体任务。

因此,优质的预训练语料库是大规模语言模型取得SOTA效果的基础。

1.2 预训练语料来源概述

常见的预训练语料来源包括:

  1. 网页:数量庞大、覆盖面广,但质量参差不齐,需要大量的清洗工作。

  2. 图书:体裁丰富、文本连贯,但版权问题需要注意。

  3. 百科:知识密度高、噪音少,但覆盖面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值