1. 背景介绍
1.1 多模态数据的兴起
随着互联网的发展,大量的多模态数据(如文本、图像、音频和视频等)在网络上广泛传播。这些数据为人工智能的发展提供了丰富的素材,同时也带来了新的挑战。如何有效地处理和利用这些多模态数据,已经成为了人工智能领域的一个重要研究方向。
1.2 知识图谱与大语言模型
知识图谱是一种结构化的知识表示方法,通过实体、属性和关系将知识组织成一个有向图。知识图谱在很多领域都有广泛的应用,如搜索引擎、推荐系统、自然语言处理等。
大语言模型是近年来自然语言处理领域的研究热点,通过大量的文本数据训练,可以生成具有强大语言理解和生成能力的模型。例如,GPT-3、BERT等都是典型的大语言模型。
1.3 视觉扩展的需求
虽然知识图谱和大语言模型在各自的领域取得了显著的成果,但它们在处理多模态数据时仍然面临一些挑战。例如,知识图谱主要关注结构化数据,而大语言模型主要关注文本数据,它们在处理图像、音频和视频等非结构化数据时的能力有限。因此,将知识图谱与大语言模型进行视觉扩展,以提高它们在多模态数据处理方面的能力,已经成为了一个重要的研究课题。