1. 背景介绍
1.1 医疗领域的挑战
医疗领域一直是人类关注的焦点,随着科技的发展,医疗领域也在不断地发生变革。然而,医疗领域依然面临着许多挑战,如数据量庞大、数据类型复杂、数据质量参差不齐等。为了解决这些问题,人工智能技术逐渐应用于医疗领域,以提高诊断准确率、降低误诊率、提高医疗效率等。
1.2 RAG模型简介
RAG模型(Retrieval-Augmented Generation)是一种结合了检索和生成的深度学习模型,它可以在大规模知识库中检索相关信息,并将这些信息融合到生成的文本中。RAG模型在自然语言处理、知识图谱、推荐系统等领域取得了显著的成果。本文将探讨RAG模型在医疗领域的应用实例,以期为医疗领域的发展提供一些启示。
2. 核心概念与联系
2.1 检索与生成
检索和生成是自然语言处理领域的两大核心任务。检索任务主要是在大规模知识库中查找与输入相关的信息,而生成任务则是根据输入生成相应的文本。RAG模型将这两个任务结合起来,实现了在生成过程中利用检索到的知识。
2.2 RAG模型结构
RAG模型主要包括两个部分:检索器(Retriever)和生成器(Generator