进化策略:无模型无梯度的强化学习方法
作者:禅与计算机程序设计艺术
1. 背景介绍
在强化学习领域,传统的方法通常需要构建环境模型并对其进行优化,或者依赖于对状态-动作值函数的估计。这些方法需要大量的数据采集和计算资源,并且对环境的先验知识有较强的依赖性。相比之下,进化策略是一种不需要任何环境模型或状态-动作值函数的强化学习算法,仅依靠随机搜索就可以直接优化控制策略。它具有计算效率高、鲁棒性强等优点,在复杂环境下表现出色。
2. 核心概念与联系
进化策略的核心思想是模拟自然进化过程,通过随机变异和选择的方式来优化策略参数。具体地说,进化策略维护一个种群,每个个体代表一个控制策略。在每一代中,种群中的个体会根据其在环境中的表现进行评估,表现较好的个体有较大概率被选择用于下一代的变异和繁衍。通过这种循环迭代,种群中的个体会逐步改善,最终收敛到一个较优的控制策略。
进化策略与其他强化学习算法的关键区别在于,它不需要构建环境模型,也不需要估计状态-动作值函数。相反,它直接优化策略参数,这使得它能够应对复杂的环境和高维的状态空间。同时,进化策略是一种无梯度优化算法,不需要计算梯度信息,这进一步提高了其计算效率和鲁棒性。
3. 核心算法原理和具体操作步骤
进化策略的核心算法流程如下:
- 初始化:随机生成一个初始种群,每个个体代表一个控制策略。
- 评估:将种群中的每个个体在环境中进行评估,获得其适应度(reward)。
- 选择:根据个体的适应度