作者:禅与计算机程序设计艺术
Transformer中的残差连接机制解析
1. 背景介绍
Transformer模型是由Google在2017年提出的一种革新性的序列到序列(seq2seq)模型,主要用于自然语言处理任务,如机器翻译和问答系统。它主要通过自注意力机制取代了循环神经网络(RNN)中的递归结构,极大地提升了计算效率,并且能够并行化处理序列,大幅减少了训练时间。然而,这种自注意力结构也带来了训练过程中梯度消失和爆炸的问题。为了解决这个问题,Transformer引入了**残差连接(Residual Connection)**这一关键组件,使得模型能够在保持深度的同时稳定训练。本文将深入探讨Transformer中的残差连接机制及其工作原理。
2. 核心概念与联系
2.1 自注意力机制
Transformer的核心是自注意力模块,该模块允许每个位置上的元素同时考虑整个序列的信息,形成全局感知的表示。其过程包括三个步骤:查询-键值匹配、加权求和以及线性变换。