1. 背景介绍
1.1 人工智能与机器学习的快速发展
近年来,人工智能(AI)和机器学习(ML)领域取得了长足的进步,并在各个行业中得到了广泛应用。从图像识别到自然语言处理,从推荐系统到自动驾驶,AI/ML技术正在改变着我们的生活和工作方式。
1.2 模型性能提升的瓶颈
然而,随着模型复杂度的增加和数据量的爆炸式增长,传统的机器学习方法面临着性能提升的瓶颈。模型的训练过程往往需要大量的数据和计算资源,且难以适应不断变化的环境和新出现的数据模式。
1.3 持续学习和反馈循环的重要性
为了克服这些挑战,研究人员和工程师们开始探索新的学习范式,其中持续学习和反馈循环成为了关键技术之一。持续学习是指模型能够在不忘记先前知识的情况下,从新数据中不断学习和改进的能力。反馈循环则是指将模型的预测结果与实际情况进行比较,并利用反馈信息来调整模型参数,从而提高模型的性能。
2. 核心概念与联系
2.1 持续学习
持续学习的核心思想是让模型能够像人类一样,在不断学习新知识的同时,保留和利用已有的知识。这需要模型具备以下能力:
- 增量学习: 能够在不重新训练整个模型的情况下,从新数据中学习新的知识。
- 灾难性遗忘: 避免在学习新知识时,忘记先前学习的知识。

本文探讨了在人工智能领域,面对模型性能提升瓶颈,如何通过持续学习和反馈循环来解决。介绍了持续学习的概念,如增量学习、避免灾难性遗忘,以及反馈循环的实现。文章还详细讲解了随机梯度下降和正则化等核心算法,并提供TensorFlow和Keras的代码实例。此外,讨论了推荐系统、自然语言处理和计算机视觉等实际应用场景。
订阅专栏 解锁全文
2944

被折叠的 条评论
为什么被折叠?



