1. 背景介绍
1.1 Atari 游戏与强化学习
Atari 游戏作为上世纪 70-80 年代的经典游戏,其简单的规则和丰富的视觉效果使其成为强化学习算法的理想测试平台。强化学习旨在训练智能体通过与环境交互,学习最佳策略以最大化累积奖励。Atari 游戏提供了多种多样的环境和挑战,可以评估强化学习算法的泛化能力和鲁棒性。
1.2 深度强化学习的兴起
深度学习的突破性进展为强化学习领域带来了新的活力。深度强化学习 (Deep Reinforcement Learning, DRL) 将深度神经网络与强化学习算法相结合,能够处理高维度的状态空间和复杂的决策问题,在 Atari 游戏等领域取得了显著成果。
2. 核心概念与联系
2.1 马尔可夫决策过程 (MDP)
马尔可夫决策过程是强化学习问题的数学模型,描述了智能体与环境之间的交互过程。它由以下几个要素组成:
- 状态 (State): 描述环境当前状况的信息。
- 动作 (Action): 智能体可以执行的操作。
- 奖励 (Reward): 智能体执行动作后获得的反馈信号。
- 状态转移概率 (Transition Probability):<