黎曼几何引论:黎曼对称空间的曲率张量
1.背景介绍
1.1 黎曼几何的历史渊源
黎曼几何是现代微分几何的基石,由德国数学家黎曼(Bernhard Riemann,1826-1866)在其著名的就职演讲《论几何学基础假设》中提出。他开创性地将几何学推广到高维空间,引入了内蕴几何的概念。黎曼几何不仅是现代微分几何的核心内容,也是广义相对论等物理学理论的数学基础。
1.2 黎曼对称空间的定义与意义
黎曼对称空间是黎曼几何中一类特殊而重要的流形。直观地说,它是一种具有丰富对称性的黎曼流形。更准确地,一个黎曼流形 $(M,g)$ 称为黎曼对称空间,如果对于每一点 $p\in M$,都存在一个保距同构 $s_p:M\to M$ 使得 $p$ 是 $s_p$ 的孤立不动点。黎曼对称空间在微分几何、李群理论、表示论等数学分支有着广泛应用,也是物理学中的重要模型。
1.3 曲率张量的重要性
在黎曼几何中,曲率是描述黎曼流形局部几何性质的关键量。黎曼曲率张量完整刻画了流形的内蕴几何结构,是判断流形是否为黎曼对称空间的重要工具。研究黎曼对称空间的曲率性质,对深入理解其几何结构、揭示其内在对称性具有重要意义。
2.核心概念与联系
2.1 黎曼度量与联络
- 黎曼度量(Riemannian metric): 一个光滑流形 $M$ 上的二阶