大语言模型原理与工程实践:提示工程的作用
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming / TextGenWebUILLM
大语言模型原理与工程实践:提示工程的作用
1. 背景介绍
1.1 问题的由来
随着大型预训练语言模型的兴起,如GPT系列、通义千问等,它们在文本生成、问答、翻译等多个自然语言处理任务上展现出令人瞩目的能力。然而,在实际应用中,如何让这些“黑盒”模型产出符合人类预期的结果,成为了一个亟待解决的问题。这就引出了提示工程——一种旨在引导大语言模型产生所需输出的方法。
1.2 研究现状
当前研究主要集中在如何设计有效的提示语(prompt)来引导模型完成特定任务。通过精心设计的提示,可以显著提高模型对任务的理解程度,并使其输出更接近用户期望。此外,提示工程还涉及模型解释、跨模态信息融合以及多模态任务处理等方面的研究。
1.3 研究意义
提示工程对于推动大语言模型在实际场景中的广泛应用具有重要意义。它不仅提高了模型的实用性,还能促进模型能力的进一步拓展,例如在法律咨询、医学诊断等领域