1. 背景介绍
近年来,随着深度学习技术的迅猛发展,大型语言模型(LLMs)如GPT-3、LaMDA等取得了显著的突破,展现出强大的语言理解和生成能力。LLMs 的出现为自然语言处理领域带来了新的机遇,也为构建智能代理(Agent)提供了新的技术支撑。LLM-based Agent 能够理解自然语言指令,并根据指令执行相应的任务,在人机交互、智能客服、任务自动化等领域具有广阔的应用前景。
1.1 LLM 的发展历程
LLMs 的发展可以追溯到早期的统计语言模型,如 N-gram 模型和隐马尔可夫模型等。随着深度学习技术的兴起,循环神经网络(RNN)和长短期记忆网络(LSTM)等模型被广泛应用于语言建模任务,并取得了显著的性能提升。近年来,基于 Transformer 架构的预训练语言模型(如 BERT、GPT-3)成为了主流,其强大的语言理解和生成能力为 LLM-based Agent 的发展奠定了基础。
1.2 LLM-based Agent 的优势
相比于传统的基于规则或符号推理的 Agent,LLM-based Agent 具有以下优势:
- 强大的语言理解能力:LLMs