LLMbasedAgent开发实战:从入门到精通

1. 背景介绍

近年来,随着深度学习技术的迅猛发展,大型语言模型(LLMs)如GPT-3、LaMDA等取得了显著的突破,展现出强大的语言理解和生成能力。LLMs 的出现为自然语言处理领域带来了新的机遇,也为构建智能代理(Agent)提供了新的技术支撑。LLM-based Agent 能够理解自然语言指令,并根据指令执行相应的任务,在人机交互、智能客服、任务自动化等领域具有广阔的应用前景。

1.1 LLM 的发展历程

LLMs 的发展可以追溯到早期的统计语言模型,如 N-gram 模型和隐马尔可夫模型等。随着深度学习技术的兴起,循环神经网络(RNN)和长短期记忆网络(LSTM)等模型被广泛应用于语言建模任务,并取得了显著的性能提升。近年来,基于 Transformer 架构的预训练语言模型(如 BERT、GPT-3)成为了主流,其强大的语言理解和生成能力为 LLM-based Agent 的发展奠定了基础。

1.2 LLM-based Agent 的优势

相比于传统的基于规则或符号推理的 Agent,LLM-based Agent 具有以下优势:

  • 强大的语言理解能力:LLMs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值