强化学习:未来发展动向预测
关键词:强化学习,未来趋势,深度强化学习,无模型学习,多智能体强化学习,强化学习应用
1. 背景介绍
1.1 问题的由来
自20世纪50年代以来,人工智能领域不断涌现出各种算法和技术。其中,强化学习(Reinforcement Learning,RL)作为一种重要的机器学习方法,因其能够使智能体在动态环境中自主学习并作出决策而备受关注。近年来,随着深度学习技术的快速发展,深度强化学习(Deep Reinforcement Learning,DRL)取得了显著的成果,并在游戏、机器人、自动驾驶等领域取得了突破性的进展。
然而,随着研究的不断深入,强化学习仍面临着诸多挑战,如样本效率低下、探索-利用权衡、稀疏奖励等。如何进一步提高强化学习的样本效率、鲁棒性和可解释性,成为当前研究的热点问题。
1.2 研究现状
目前,强化学习的研究主要集中在以下几个方面:
- 深度强化学习:利用深度神经网络进行特征提取和价值评估,提高学习效率。