解决:FlashAttention only supports Ampere GPUs or newer.

flash attention是一个用于加速模型训练推理的可选项,且仅适用于Turing、Ampere、Ada、Hopper架构的Nvidia GPU显卡(如H100、A100、RTX X090、T4)

1.首先检查一下GPU是否支持:FlashAttention

import torch
def supports_flash_attention(device_id: int):
    """Check if a GPU supports FlashAttention."""
    major, minor = torch.cuda.get_device_capability(device_id)
    
    # Check if the GPU architecture is Ampere (SM 8.x) or newer (SM 9.0)
    is_sm8x = major == 8 and minor >= 0
    is_sm90 = major == 9 and minor == 0

    return is_sm8x or is_sm90

print(supports_flash_attention(device_id)) #-> device_id 显卡号, 0 / 1 / 2 。。。

2.如果不支持,将模型文件夹中的config.json文件中的use_flash_attn改为false。

use_flash_attn参数名称可能会有些不同。

3.如果支持,将FlashAttention升级版本。

!pip install -U flash-attn
### CUDA 12.5 Compatible PyTorch Versions For ensuring compatibility between CUDA and PyTorch, it's essential to match the correct versions of both software components. With CUDA 12.5 specifically, certain PyTorch releases are designed to work seamlessly with this version of CUDA. The latest stable release of PyTorch as of now supports CUDA up to a specific version which may or may not include CUDA 12.5 depending on when updates were made relative to your query date. For precise information regarding supported CUDA versions by each PyTorch build, one should refer directly to official documentation provided by PyTorch developers[^4]. However, typically newer major releases of PyTorch tend to add support for recent CUDA versions while maintaining backward compatibility within reasonable limits. Therefore, users aiming to utilize CUDA 12.5 would likely need at least PyTorch version `2.0` or later since these iterations have been noted for expanding their hardware support including more advanced NVIDIA architectures like Ampere (e.g., RTX 30 series GPUs)[^5]. To verify exact compatibility: - Check the [official PyTorch website](https://pytorch.org/get-started/locally/) where tables listing available binaries alongside corresponding CUDA versions can be found. - Consider installing via Conda channels that often provide pre-built environments tailored towards different computational backends such as CUDA 12.5. When setting up an environment using pip or conda commands ensure all necessary dependencies are met avoiding errors similar to those encountered during package installations[^6]: ```bash conda create -n pytorch_env python=3.9 conda activate pytorch_env conda install pytorch torchvision torchaudio cudatoolkit=12.5 -c pytorch-nightly ``` This command sequence creates a new Python environment named "pytorch_env", activates it, then installs compatible builds of PyTorch along with other libraries linked against CUDA Toolkit 12.5 from nightly builds repository which might offer cutting-edge features but could also contain experimental changes.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曼城周杰伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值