在OpenCV中图像边界扩展 copyMakeBorder 的实现

本文介绍了OpenCV中图像边界扩展的方法,重点讨论了copyMakeBorder函数的使用,包括四种边界类型:重复、反射、反射101和外包装。并详细解析了opencv的实现过程,涉及Utils.cpp、Filter.cpp、Ts_func.cpp中的相关源码,以及如何通过borderInterpolate计算原图对应位置。最后提到了medianBlur函数中采用的重复复制最边缘像素的BORDER_REPLICATE边界处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 边界处理的类型

2. opencv的实现


在图像处理中,经常需要空域或频域的滤波处理,在进入真正的处理程序前,需要考虑图像边界情况。

通常的处理方法是为图像增加一定的边缘,以适应 卷积核 在原图像边界的操作。


1. 增加边界的类型有以下4个类型:

以一行图像数据为例,abcdefgh是原图数据,|是图像边界,为原图加边

aaaaaa|abcdefgh|hhhhhhh     重复

fedcba|abcdefgh|hgfedcb    反射

gfedcb|abcdefgh|gfedcba  反射101,相当于上一行的左右互换

cdefgh|abcdefgh|abcdefg  外包装

iiiiii|abcdefgh|iiiiiii  with some specified 'i'  常量

2. opencv的实现

opencv中有几处增加边界的实现,其源码分别散布在Utils.cpp,Filter.cpp,Ts_func.cpp中,功能和实现都基本相同。

以Utils的copyMakeBorder,及Filter中的borderInterpolate为例,这两种的代码风格比较通俗易懂。

边界处理的步骤:

   首先,为目的图像(结果图像)分配内存,图像大小为size(src.rows + top + bottom, src.cols + left + right)

    然后,以原图为基准,逐行处理,先扩展左边界,复制原图数据到目的图像,再扩展右边界。

    最后,扩展上边界,以及下边界。


其中,每扩展一个边界像素,都需要计算出对应的原图中的位置,这个功能被提炼出来,就是borderInterpolate

/*
 Various border types, image boundaries are denoted with '|'
 
 * BORDER_REPLICATE:     aaaaaa|abcdefgh|hhhhhhh
 * BORDER_REFLECT:     
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值