传统Vision Transformer (ViT) 模型主要用于图像分类任务,它的输出通常是图像的分类概率分布。具体来说,模型的输出包括两个部分:
-
分类结果 (
x
): 模型最终的输出是一个经过全连接层(self.head
)处理后的向量,表示图像在预定类别中的概率分布(logits)。这个输出适用于图像分类任务。 -
注意力权重 (
attn
): 模型在最后一个Transformer块中计算的自注意力权重(self-attention weights)。这个输出可以用于可视化模型对输入图像各个部分的关注程度,但在一般的分类任务中,主要关注的是x
部分的输出。
将ViT用于分割或检测任务
要将ViT模型应用到分割(Segmentation)或检测(Detection)任务中,通常需要修改模型的结构,尤其是调整模型的输出头(head)部分。以下是两种方法:
1. 更换输出头 (Head)
- 分割任务: 对于分割任务,你可以将最后的分类头(
self.head
)替换为一个适合分割任务的头。例如,可以使用一个卷积层或者反卷积层,将特征映射还原为与输入图像大小一致的分割图。这通常包括使用conv
或deconv
层来生成像素级的分类输出。 - 检测任务: 对于检测任务,通常会使用一种如
Region Proposal Network (RPN)
的结构或者Anchor-based的方法来生成候选区域。然后通过一个检测头将ViT输出的特征图映射为物体检测的输出(如边界框和类别)。
2. 集成进已有的分割/检测架构
- 可以将ViT的特征提取部分(去掉分类头)作为特征提取器,并将这些特征传递给一个分割或检测的头。对于分割任务,可以将这些特征传递给例如
U-Net
或者FCN
等分割网络的decoder部分。对于检测任务,可以结合Faster R-CNN
或YOLO
等框架,使用ViT提取的特征进行物体检测。
3. 特定任务的预训练
- 对于分割和检测任务,由于任务的性质不同,通常需要对模型进行特定任务的预训练。这意味着你可能需要从一个预训练的ViT模型开始,然后在分割或检测数据集上进一步微调(fine-tuning)。
具体操作示例
假设你要将ViT应用于图像分割任务,你可以:
替换分类头:
class VisionTransformerForSegmentation(VisionTransformer):
def __init__(self, ...):
super().__init__(...)
# 替换分类头为一个适合分割的头
self.segmentation_head = nn.Conv2d(in_channels=embed_dim, out_channels=num_classes, kernel_size=1)
def forward(self, x):
x, _ = self.forward_features(x)
x = self.segmentation_head(x)
return x
使用ViT的特征提取器:
class CustomSegmentationModel(nn.Module):
def __init__(self, vit_model, segmentation_head):
super().__init__()
self.vit = vit_model
self.segmentation_head = segmentation_head
def forward(self, x):
features, _ = self.vit.forward_features(x)
segmentation_output = self.segmentation_head(features)
return segmentation_output
这样就可以利用ViT的强大特征提取能力,并将其应用到分割或检测任务中。