yolov5v7.0 segmet 实例分割 openvino Dnn onnxruntime C++部署
训练后模型导出成onnx
C++后台可使用openvino Dnn onnxruntime推理,封装成dll库,支持多模型并行运行,支持自训练自定义模型
支持界面MFC/C#/Qt调用
ID:882400694310355195
IT干将
标题:深度学习模型的ONNX导出与多模型并行运行的C++后端部署
摘要:本文将介绍如何使用YOLOv5v7.0和Segment实例分割模型,将其训练后的模型导出为ONNX格式,并通过使用OpenVINO DNN和ONNXRuntime进行C++后端部署。我们还将探讨如何封装成DLL库,以支持多模型并行运行,并可通过界面MFC、C#和Qt进行调用。
引言:
在当今的计算机视觉领域中,深度学习模型在目标检测和实例分割方面取得了巨大的成功。YOLOv5v7.0和Segment实例分割模型作为当下热门的模型之一,其在物体识别与分割、场景理解和自动驾驶等领域有着广泛的应用前景。然而,如何高效地将这些训练好的模型部署到现实生产环境中,成为了一个关键的挑战。本文将重点介绍如何利用ONNX格式和C++后端进行部署,并提供了封装成DLL库以支持多模型并行运行的方法,同时还探讨了通过界面MFC、C#和Qt进行调用的实现。
- YOLOv5v7.0和Segment实例分割模型训练及导出
1.1 YOLOv5v7.0模型
1.1.1 YOLOv5v7.0模型介绍
1.1.2 YOLOv5v7.0模型训练方法
1.1.3 YOLOv5v7.0模型导出成ONNX格式
1.2 Segment实例分割模型
1.2.1 Segment实例分割模型介绍
1.2.2 Segment实例分割模型训练方法
1.2.3 Segment实例分割模型导出成ONNX格式
-
C++后端部署与封装
2.1 OpenVINO DNN框架介绍
2.2 ONNXRuntime框架介绍
2.3 使用OpenVINO DNN进行推理
2.4 封装成DLL库以支持多模型并行运行 -
界面调用实现
3.1 MFC界面调用
3.2 C#界面调用
3.3 Qt界面调用
结论:
本文介绍了如何将YOLOv5v7.0和Segment实例分割模型训练后导出为ONNX格式,并通过使用OpenVINO DNN和ONNXRuntime进行C++后端部署。我们还提供了封装成DLL库以支持多模型并行运行的方法,并探讨了通过界面MFC、C#和Qt进行调用的实现。这些方法将帮助开发者更高效地将深度学习模型部署到实际应用中,提升计算机视觉领域的应用性能和效率。
关键词:YOLOv5v7.0、Segment、ONNX、OpenVINO DNN、ONNXRuntime、C++部署、DLL库、MFC、C#、Qt。
【相关代码 程序地址】: http://nodep.cn/694310355195.html