力位混合控制

记录学习的笔记

机械臂技术<2>-力位混合控制icon-default.png?t=O83Ahttps://zhuanlan.zhihu.com/p/65034861

        两难全

如果我们对位置闭环,那就无法控制力。

如果我们对力闭环,那就无法控制位置。

        Hogan提出了阻抗控制的概念,即我们用位置闭环去控制机械臂末端(也可用于机器人),但是末端具有一定的刚度,与外界接触时会表现出力的特征。

阻抗/导纳控制

        阻抗控制是直接控制力(电流)的方式;导纳控制是通过控制位置来控制力

        “阻尼质量弹簧(BMK)”模型,以平滑的运动回到虚拟弹簧的原点;

        控制机械臂与环境的接触,是通过控制机械臂末端的四个参数:虚拟质量M,虚拟阻尼B,虚拟刚度K,虚拟弹簧原点x0;

### 混合控制的解耦方法与原理 混合控制是一种用于机器人关节或机械臂系统的先进控制技术,旨在同时实现置和的精确控制。为了有效实施这种控制方式,必须解决置之间的耦合问题。 #### 1. 主动柔顺控制中的解耦机制 主动柔顺控制是混合控制的核心思想之一[^3]。它通过引入阻抗模型或导纳模型来描述系统对外部环境的作用特性。具体来说: - **阻抗控制**:定义外部作用与目标运动轨迹的关系,从而间接影响置输出。 - **导纳控制**:定义输入与速度响应的关系,直接调节受控对象的速度变化。 这两种方法均需依赖于动态解耦算法,以分离反馈信号与置指令间的相互干扰。例如,在实际应用中可以通过设计合适的控制器参数矩阵 \( K_p \) 和 \( K_d \),分别对应比例增益和阻尼系数,完成对置分量的有效隔离。 #### 2. 数学建模与优化求解 对于复杂的多自由度系统而言,仅依靠简单的线性补偿难以满足高性能需求。此时可借助更高级别的理论工具——如 Pontryagin 极小值原理 (PMP)[^2] 来构建全局最优的能量分配方案。此过程涉及如下几个方面: - 定义状态向量 \( x(t)=[q,\dot{q}]^\top \),其中 \( q \) 表示广义坐标而 \( \dot{q} \) 则代表其时间导数; - 引入协态变量 λ 并建立 Hamiltonian 函数 H(x,u,λ,t); - 应用边界条件以及横截约束方程组寻找使性能指标 J 达到最小化的控制律 u*(t). 值得注意的是,上述计算往往伴随着初值不确定性的问题,因此需要运用数值迭代法逐步逼近真实解空间. #### 3. 数据驱动型解决方案 除了传统解析途径外,现代人工智能技术也为这一领域注入了新的活。比如有学者提出了利用 BP 神经网络来进行六维传感器数据处理的新思路[^4]. 具体做法包括但不限于以下几个环节: - 收集原始传感读数作为训练样本集合; - 设计前馈结构并调整权值直至收敛至理想误差范围之内; - 验证最终模型能否准确区分不同方向上的负载分布情况. 这种方法的优势在于无需预先假设物理规律即可自动提取特征模式,尤其适合那些存在显著非线性特性的场景下使用. ```python import numpy as np from sklearn.neural_network import MLPRegressor # 示例代码片段展示如何创建一个多层感知器回归器实例 X_train = np.random.rand(100,6)*2 -1 # 假设这是标准化后的输入特征 y_train = np.sin(np.linalg.norm(X_train,axis=1))[:,None]+np.cos(np.sum(X_train,axis=1))[:,None] model = MLPRegressor(hidden_layer_sizes=(8,), activation='relu', solver='adam') model.fit(X_train,y_train) def predict_force_decoupling(input_data): return model.predict([input_data]) ``` 以上展示了基本框架下的一个简化版本实现流程图样代码供参考学习之用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值