引言
在信息爆炸的时代,准确快速地找到事实性问题的答案变得尤为重要。LangChain的Self-Ask with Search代理(SELF_ASK_WITH_SEARCH
)正是为了解决这一挑战而生。本文将深入探讨这一代理的工作原理,并通过实例演示其如何巧妙地处理多跳问题。
Self-Ask with Search代理简介
Self-Ask with Search代理利用了一种创新的“追问”和“中间答案”策略,以辅助大型语言模型(如GPT-3.5)解决那些需要多步推理或多次查询的问题。这种代理特别适合处理多跳问题,即那些不能通过单一查询直接得到答案的问题。
多跳问题的特点
多跳问题要求我们跨越多个信息点,或者从多个数据来源进行组合和整合,以找到最终答案。这类问题的解答过程就像是一连串的问题跳跃,需要我们首先找到相关的中间信息,然后再基于这些信息找到最终答案。
实例演示:解决多跳问题
让我们通过一个实例来看看Self-Ask with Search代理是如何工作的。假设我们需要回答这样一个问题:“使用玫瑰作为国花的国家的首都是哪里?”。这个问题要求我们首先识别出哪个国家将玫瑰定为国花,然后找出这个国家的首都。
代码实现
from langchain_openai import ChatOpenAI