背景知识
在计算机视觉领域,热力图(heatmap)是一种通过颜色变化来表示数据值的可视化工具。它能够直观地展示出数据的分布情况、密度以及变量之间的关系[1][3]。热力图常用于目标检测、图像分割、姿态估计等任务中,帮助研究人员和工程师更好地理解模型的输出结果和决策过程[6]。
为什么要绘制热力图 or attention maps
在YOLOv8和YOLOv11系列模型中,绘制热力图或注意力图(attention maps)具有重要意义:
-
可视化特征学习:通过热力图,我们可以直观地看到模型在不同层次上学习到的特征表示,有助于理解模型的工作原理和决策过程[4][6]。
-
调试和优化模型:热力图可以帮助我们识别模型在哪些区域表现良好,哪些区域存在不足,从而指导模型的调整和优化[3][4]。
-
解释模型预测:通过将热力图与输入图像相结合,我们可以更好地解释模型的预测结果,增强模型的可解释性和可信度[6]。
理论原理
热力图的生成通常基于模型的中间层输出或注意力机制。在YOLOv8和YOLOv11中,可